首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work is reported the preparation and characterization of 5,10,15,20‐tetraphenylporphyrin (H2TPP) films at the water‐air interfaces. The surface pressure‐area isotherms (π‐A) and UV‐Vis spectroscopy were used to investigate the effect of the spreading methods and parameters on the porphyrin monolayer formation. Also, Langmuir‐Blodgett (LB) and Langmuir‐Schaefer (LS) films were deposited onto glass substrates in order to study the conformation changes in porphyrin molecular packing. Quartz crystal microbalance (QCM) was utilized as the active solid substrate for the development of the NO2 gas sensor based on the H2TPP molecular films. The results of π‐A curves have clearly shown the significant contribution of the preparation methods and processing parameters on the conformation of porphyrin molecular films. The UV‐Vis spectroscopy results using polarized absorption dichroism have indicated different molecular packing for porphyrin films deposited by LB and LS methods, with relative tilted angles of 50° ± 5° and 35° ± 5°, respectively. Moreover, the QCM response has given strong evidence that H2TPP porphyrin molecular films have performed as NO2 chemsensor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The nitridation of vanadium films in molecular nitrogen and ammonia using a RTP‐system was investigated. The V films were deposited on silicon substrates covered by 100 nm thermal SiO2. For a few experiments sapphire substrates were used. Nitride formation at high temperatures (900 and 1100 °C) and interface reactions and diffusion of oxygen out of the SiO2‐layer into the metal lattice at moderate temperatures (600 and 700 °C) were studied. For characterisation complementary analytical methods were used: X‐ray diffraction (XRD) for phase analysis, secondary neutral mass spectrometry (SNMS) and Rutherford Backscattering (RBS) for acquisition of depth profiles of V, N, O, C and Si, transmission electron microscopy (TEM) in combination with electron energy filtering for imaging element distributions (EFTEM) and recording electron energy loss spectra (EELS) to obtain detailed information about the initial stages of nitride, oxide and oxynitride formation, respectively, and the microstructure and element distributions of the films. In these experiments the SiO2‐layer acts as diffusion barrier for nitrogen and source for oxygen causing the formation of substoichiometric vanadium oxides and oxynitrides near the V/SiO2‐interface primarily at temperatures ≤ 900 °C. At a temperature of 1100 °C just a small amount of oxynitride forms near the interface because rapid diffusion of nitrogen and fast formation of VN (diffusion barrier for oxygen) inhibit the outdiffusion of oxygen into the metal layer. In the 600 °C regime, in argon atmosphere oxynitride phases observed in the surface region of these films originate from reaction of residual oxygen in the argon gas, whereas NH3 as process gas does not lead to oxide or oxynitride formation at the surface (apart from the oxidation caused by storage). NH3 seems to support the diffusion of oxygen out of the SiO2‐layer. During the decomposition of ammonia at higher temperatures hydrogen is formed, which could attack the SiO2. In contrast, sapphire substrates do not act as oxygen source in the 600 °C regime and change the nitridation behaviour of the vanadium films.  相似文献   

3.
Polycrystalline thin films of La2NiO4+δ have been synthesized on yttria stabilized zirconia (YSZ) substrates by dip-coating using a polymeric sol. Crack-free films were obtained after sintering in air at temperatures ranging from 800°C to 1000°C. The microstructure, characterized by SEM, shows the formation of dense polycrystalline films with smooth surface and mean grains size of 140 nm, for films sintered at 1000°C. A correlation between grains size and non-stoichiometry in powders have been made in our processes. The thickness, evaluated for rugosimetry measurements, is thin (80 nm) and is a function of the viscosity of the sol. The higher the thickness, the higher the viscosity. As the non-stoichiometry level is controlled by the oxygen partial pressure, an evolution of non-stoichiometry in thin film has proposed. Then, it is possible by modifying synthesis and processing parameters to prepare thin films with a controlled microstructure (thickness, porosity and non-stoichiometry).  相似文献   

4.
The Bi5FeTi3O15 (BFTO) films of layered structure have been fabricated on Pt/Ti/SiO2/Si substrates by the sol–gel method. The thermal decomposition behaviors of precursor powder were examined using thermo-gravimetric and differential scanning calorimeters analysis. The optimal heat treatment process for BFTO films were determined to be low-temperature drying at 200 °C for 4 min and high-temperature drying at 350 °C for 5 min followed by annealing at 740 °C for 60 min, which led to the formation of compact films with uniform grains of ~300 nm. The structural, surface topography, ferroelectric and magnetic properties of the films were investigated. The remnant polarization (2P r) of BFTO thin films under an applied electric field of ~550 kV/cm are determined to be 67.5 μC/cm2 . Meanwhile, the weak ferromagnetic properties of the BFTO films were observed at room temperature.  相似文献   

5.
Epitaxial crystallization of polyoxymethylene (POM) from 0.5% iodobenzene solution has been attempted between 150 and 165°C on 11 different substrates having surface energies ranging from 136 to 1240 ergs/cm2. Included in this series are several substrates such as CaF2, SrF2, BaF2, graphite, mica, and silicon which had not been previously tested as substrates for POM epitaxy. The fluorite series materials are not good substrates for the epitaxial crystallization of POM from solution. In contrast, both rodlike and fold-plane epitaxial morphologies have been found on the (001) surfaces of NaCl, NaF, and mica. A possible mechanism for the formation of fold-plane epitaxy is discussed which involves solution nucleation followed by adsorption and growth of the nuclei on the substrate. It is suggested that variations observed in nucleation density of rodlike epitaxial crystals from substrate to substrate are a result of differences in degree of preferential solvent adsorption. Substrates having higher surface energies should tend to adsorb solvent more strongly and thus inhibit profuse nucleation of polymer crystals on the surface.  相似文献   

6.
《Solid State Sciences》2007,9(2):185-195
Spontaneous solid-state spreading of In2O3 over the surface of ceramic and single crystal substrates of Al2O3, ZrO2(0.08Y2O3), Y3Al5O12 and YAlO3 at 1380 and 1500 °C has been investigated. The films structure, element and phase composition were studied by means of XRD and SEM/EDS. The phase compositions of all films correspond to that of powder In2O3. The most films are dense with monolithic “film/substrate” interface. AC-conductivity in the range 25–250 °C is reported. Depending on the substrate material, the films demonstrate a whole set of conductivity types (semi-conductive, metallic) and wide range of magnitudes (more than 3 orders).Thermodynamic and kinetic aspects of oxide spreading and subsequent crystallization on the surface of primary border film are discussed. It is shown, in particular, that the solid-state spreading is facilitated in systems with high chemical affinity (mutual solubility, formation of intermediate interface compounds). In the case of eutectic-type systems, heteroepitaxy of diffusant at substrate surface results in formation of dense films.  相似文献   

7.
Transparent, superhydrophobic coating films have been prepared on polymer substrates at low temperatures through the sol-gel method. Al2O3 gel films were prepared on poly(ethylene terephthalate) substrates from Al(O-sec-C4H9)3 chemically modified with ethyl acetoacetate. A small roughness of about 20–50 nm was found to form on the surface of the Al2O3 gel films dried at room temperature and then immersed in hot water at 60°C. The electron diffraction measurements have shown that this roughened surface consists of pseudoboehmite nanocrystals. The coating of hydrolyzed fluoroalkyltrimethoxysilane on the Al2O3 gel films with the small roughness produced transparent, superhydrophobic films with contact angle for water larger than 150°.  相似文献   

8.
The kinetics of the thermal oxidation of stabilised and unstabilised nylon 66 fibres and films have been studied by photon counting oxyluminescence methods from 50°C to 150°C. The activation energies for initiation (E1), propagation (E3) and termination (E5) over this temperature range are: E1 = 16 kcal mol?1, E3 = 17·5 kcal mol?1 and E5 ≈ 12 kcal mol?1. The extent of orientation of the polymer does not change the nature of the oxyluminescence curve or E3 and E5 above 110°C.Significant losses of critical mechanical properties of the fibres occur in the induction period at 100°C and non-stationary kinetics are described to enable this region to be studied by oxyluminescence. The oxidation rate in the induction period and the limiting rate region in air is one-third the rate in oxygen at atmospheric pressure. Non-stationary methods show that alkyl radical reactions are competitive with alkyl peroxy radical formation in air over the temperature range 100°C to 140°C. This affects the course of the oxidation reaction and the stabiliser efficiency and explains the observation of unsaturated oxidation products by phosphorescence spectroscopy.  相似文献   

9.
Nickel thin films have been sputtered on standard Si/SiO2 substrates with TiO2 as an adhesive layer. The thermal stability of these substrates was analyzed. SEM images show an increase in grain size with annealing temperature. They were found to be stable till 800°C, beyond which the nickel layer disintegrated. These substrates were used for deposition of BaTiO3 and (Ba,Sr)TiO3 dielectric thin films under a reducing atmosphere. The dielectric thin films were processed with various pyrolysis and annealing temperatures in order to optimize the dielectric properties. Increased pyrolysis temperatures showed an increase in the grain size. Results on these nickelised substrates were finally compared with dielectric films deposited on platinized silicon substrates under identical conditions but crystallized in an oxygen atmosphere.  相似文献   

10.
The polymer dispersed nematic liquid crystal (LC) with the tilted surface anchoring has been studied. The droplet orientational structures with two point surface defects – boojums and the surface ring defect – are formed within the films. The director tilt angle α = 40° ± 4° at the droplet interface and LC surface anchoring strength Ws ~ 10–6 (J m?2) have been estimated. The bipolar axes within the studied droplets of oblate ellipsoidal form can be randomly oriented are oriented randomly relatively to the ellipsoid axes as opposed to the droplets with homeotropic and tangential anchoring.  相似文献   

11.
Hybrid organic/inorganic films have been prepared from an aqueous solution of polyvinyl alcohol (PVA) and silver nitrate (AgNO3). The silver nanoparticles have been generated in the PVA matrix by thermal treatments. The structure and the morphology of the hybrid films have been studied as a function of the silver precursor concentration and of the annealing conditions for a wide range of annealing temperatures. It was shown that in the uncured hybrid film most of the silver ions were initially coordinated with the polymer OH groups to form a chelate structure. A nanostructuration effect leading to the formation of crystalline silver nanoparticles was evidenced for annealing treatments performed at temperatures higher than 90 °C. For a curing temperature equal to 110 °C, the sizes of the formed nanoparticles were only slightly increasing as a function of annealing time and the effect of AgNO3 complex amount in this curing condition was also significant, but slight. Annealing at a temperature equal to 160 °C thus at a temperature for which a part of the crystalline phase of PVA was melt led to an important increase of the size of the generated metal nanoparticles. The evolution of the morphology was discussed for each curing temperature as a function of the kinetics of the nanostructuration, of the size of the matrix amorphous lamellae and of the polymer chain mobility. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2657–2672, 2007  相似文献   

12.
Thin sol-gel hafnia films have been synthesised from HfCl4, the synthesis has revealed to be a simple route to fabrication of hafnia films with high transparency in the UV-visible range. The films have been fired at different temperatures in air up to 1000°C and have been characterized by X-ray diffraction and Fourier transform infrared spectroscopy. Infrared absorption spectra of hafnia films have allowed to follow the formation of monoclinic crystalline phases together with XRD. Formation of monoclinic hafnia crystallites has been observed upon calcination at temperatures higher than 600°C, as shown by infrared spectroscopy and XRD. The optical transmission and the refractive index as a function of the temperature of firing have been characterized by UV-Visible spectroscopy and spectroscopic ellipsometry. The hafnia films, after firing at 600°C, had a refractive index of 1.92 with a thickness of around 70 nm.  相似文献   

13.
A novel set of light-responsive polyelectrolytes has been developed and studied, to control and tune surface wettability by introducing various types of substituted R head-groups of azo polyelectrolytes in self-assembled multilayer (SAMU) films. As part of a larger project to develop polymer surfaces where one can exert precise control over properties important to proteins and cells in contact, photo-reversibly, we describe here how one can tune quite reliably the contact angle of a biocompatible SAMU, containing a photo-reversible azo chromophore for eventual directed cell growth. The azo polyelectrolytes described here have different substituted R head-group pairs of shorter-ionized hydrophilic COOH and SO3H, shorter non-ionized hydrophobic H and OC2H5, and larger non-ionized hydrophobic octyl C8H17 and C8F17, and were employed as polyanions to fabricate the SAMU onto silicon substrates by using the counter-charge polycation PDAC. The prepared SAMU films were primarily characterized by measurement of their contact angles with water. The surface wetting properties of the thin films were found to be dependent on the type of substituted R-groups of the azo polyelectrolytes through their degree of ionization, size, hydrophobicity/hydrophilicity, solubility, conformation, and inter-polymeric association and intra-polymeric aggregation. All these factors appeared to be inter-related, and influenced variations in hydrophobic/hydrophilic character to different extents of aggregates/non-aggregates in solution because of solvation effects of the azo polyanions, and were thus manifested when adsorbed as thin films via the SAMU deposition process. For example, one interesting observation is significantly higher contact angles of 79° for SAMU films of larger octyl R groups of PAPEA-C8F17 and PAPEA-C8H17 than for others with contact angles of 64° observed for non-polar R-groups of OC2H5 and H. Furthermore, lower contact angle values of 59° for SAMU films with polar R-groups of COOH and SO3H relative to that of non-polar R-groups are in accordance with their expected order of the hydrophilicity or hydrophobicity. It is possible that the large octyl groups are more effective in shielding the ionic functional groups on the substrate surface, and contributed less to the water drop-molecule interactions with ionic groups of the PDAC and/or AA groups. In addition, higher hydrophobicity of the SAMU films may be due to the incorporation of bulky and hydrophobic groups in these polyelectrolytes, which can produce aggregates on the surfaces of the SAMU films. Through understanding and controlling the complex aggregation behavior of the different substituted R-groups of these azo polyelectrolytes, and hence their adsorption on substrates, it appears possible to finely tune the surface energy of these biocompatible films over a wide range, enhance the photo-switching capabilities of the SAMU films, and tailor other surface properties for the development and application of new devices in diverse areas of microfluidics, specialty coatings, sensors, and biomedical sciences.  相似文献   

14.

We have used the formation of surface relief gratings (SRG) on azobenzene polymers to manipulate TiO2 nanoparticles and to fabricate TiO2 nanoparticle gratings. Suspensions of an azobenzene polymer (PDO3) and TiO2 were used to spin coat thin films on glass slide substrates. By interfering coherent light from an Argon laser on the surface of the PDO3‐TiO2 composite films, SRGs were fabricated. Atomic force microscopic images of the SRGs show TiO2 nanoparticles dispersed throughout the sample, and in particular, at the peaks of the SRG after oxygen plasma treatment. The lateral forces acting on the azobenzene polymer during the SRG fabrication drag the TiO2 nanoparticles. These results indicated that it is feasible to create TiO2 nanoparticle gratings with the composites.  相似文献   

15.
A series of bis(β‐diketonato)tin compounds have been systematically synthesized and examined as precursors for chemical vapor deposition of SnO2 thin films. These complexes were characterized by elemental analyses and NMR, IR and mass spectroscopic methods. X‐ray single‐crystal determination of Sn(tfac)2 reveals that the complex possesses a distorted trigonal bipyramidal structure. The SnO2 films can be deposited on the substrates such as silicon, titanium nitride, and glass by using Sn(hfac)2, Sn(tfac)2 and Sn(acac)2 as CVD precursors at deposition temperatures of 300‐600°C with a carrier gas of O2. The deposition rates range from 20 to 600 Å/min. Deposited films have been characterized by XRD, SEM, AFM, AES and AAS analyses.  相似文献   

16.
Fluorocarbon polymer films were prepared by plasma polymerization using nitrogen trifluoride (NF3) and propylene as starting materials. To improve their adhesiveness to substrates, a novel functionally gradient film in which the content of fluorine decreased continuously from the surface to the interior was prepared by changing source gas composition during deposition. This film had a smooth and pinhole-free surface, and had a high contact angle (110°) for water drop. In addition, it showed good adhesion to a glass substrate. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
(K0.5 Na0.5)NbO3 (KNN) perovskite materials have been developed as a promising lead-free piezoelectric material for environmentally benign piezoelectric devices. KNN films with about 320 nm thickness were fabricated on Pt(111)/SiO2/Si(100) substrates by a sol–gel method from stoichiometric and A-site ion excess precursor solutions. Two different annealing methods were also used to investigate the crystallographic evolution of the films. A layer-by-layer annealing process results in highly (001) oriented KNN from the annealing temperature of 550 °C, while the final annealing method leads to weaker crystalline peaks with a random orientation. The KNN films from the K and Na excess precursor solutions show similar crystallization behavior. However, the ferroelectric hysteresis loops of the films were greatly improved by compensating for an A-site vacancy. In particular, the KNN films from K-excess precursor solutions show better ferroelectric properties compared to the films prepared from Na excess solutions.  相似文献   

18.
Modified polyimide films containing cobalt have been prepared by the addition of cobalt(II) chloride to a solution containing one of the diamines 4,4′-oxydianiline (ODA) or 4,4′-diaminodiphenylsulfide (DDS) and one of the dianhydrides 3.3′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) or 4,4′-bis(3,4-dicarboxyphenoxy)diphenylsulfide dianhydride (BDSDA) and characterized by thermal methods, UV-visible spectra, room-temperature direct-current electrical resistivity measurements, and X-ray photoelectron and Auger electron spectroscopy. A principal goal of this work was to establish if there was coordination of the potential donor atoms of the polymide to cobalt. UV-visible spectra of the modified polyamic acid solutions and polyimide films and a titration study of a model system do not show any appreciable coordination with either the polyamic acid or the polyimide; rather, the cobalt(II) appears to be coordinated to the solvent, N,N-dimethylacetamide (DMAc), as [Co(DMAc)4]2+, until the temperature is raised above 200°C. X-ray photoelectron spectra of films cured only to 200°C also do not show significant shifts in the binding energies of the potential donor atoms from those binding energies of the undoped polymers, confirming little direct coordination of the cobalt to atoms of the polyimide. Heating the films to 300°C in a forced-air oven causes the formation of a cobalt oxide layer on the air side of the polymer. Direct-current electrical resistivity measurements on this surface show a 104–106 reduction in resistivity due to this layer.  相似文献   

19.
Sol–gel synthesis route was suggested to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHA) thin films on quartz substrates. CHA thin films were obtained using dip-coating and spin-coating techniques by coating the substrates 1, 5, 15 and 30 times. In the sol–gel process, the ethylenediaminetetraacetic acid and 1,2-ethandiol as complexing agents were used. Moreover, triethanolamine and polyvinyl alcohol were used as gel network forming materials. After each coating procedure the films were annealed at 1,000 °C. The results obtained from dip-coating and spin-coating techniques were compared in this study. It was demonstrated, that the formation of calcium hydroxyapatite depends on dipping (or spinning) time and annealing duration.  相似文献   

20.
The photocatalytic activity of TiO2 nanofibers immobilized on quartz substrates was investigated by evaluating the decomposition of organic pollutants. TiO2 nanofibers were synthesized by electrospinning the Ti-precursor/polymer mixture solution, followed by hot-pressing for enhancing the adhesion of TiO2-nanofiber films to the substrates. TiO2 started to crystalize in the anatase form at 500 °C and reached the optimal photocatalytic anatase/rutile phase ratio of 70:30 at a calcination temperature of 600 °C. The TiO2-nanofiber film was demonstrated to be an efficient photocatalyst by ranitidine decomposition under UV illumination and was proven to have a comparable photocatalytic activity with the well-known Degussa P25 nanoparticulate photocatalyst and excellent recyclability during 10 cycles of photocatalytic operation, indicating no loss of TiO2 nanofibers during photocatalytic operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号