首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Silver nanoparticles of different sizes were prepared by citrate reduction and characterized by UV-vis absorbance spectra, TEM images and photoluminescence spectra. The morphology of the colloids obtained consists of a mixture of nanorods and spheres. The surface plasmon resonance (SPR) and photoemission properties of Ag nanoparticles are found to be sensitive to citrate concentration. A blue shift in SPR and an enhancement in photoluminescence intensity are observed with increase in citrate concentration. Effect of addition of KCl and variation of pH in photoluminescence was also studied.  相似文献   

2.
3.
The localized surface plasmon resonance (SPR) spectrum of silver nanoparticles fabricated on a thermochromatic film, vanadium dioxide (VO2), is studied in this paper. Owing to the temperature-dependent dielectric function of VO2, the SPR band dramatically exhibits temperature dependence in the range of 30-80 degrees C. The peak extinction wavelength, lambda(SPR), blueshifts as temperature increases and reversibly redshifts as temperature decreases. The shift magnitude (DeltalambdaSPR) is strongly dependent on the silver mass thickness, dm; a value of 50 nm of DeltalambdaSPR is achieved for particles (mean diameter 51 nm) with dm=2 nm while a value of 250 nm is achieved for particles (mean diameter 133 nm) with dm=10 nm. Beyond the SPR band, it is interesting to find that the spectral line shape of silver particles is dominated by the imaginary part of the dielectric function of VO2. These results can be interpreted based on dynamical Maxwell-Garnett theory.  相似文献   

4.
Determination of dextrose in peritoneal dialysis with a method based on silver nanoparticles (AgNPs) formation was investigated. In a green chemistry method, silver nanoparticles (AgNPs) were synthesized in the natural polymeric matrix of gelatin. The nanoparticles were characterized with UV–Vis spectroscopy and transmission electron microscopy (TEM). Absorbance signal of AgNPs could be applied to determine the various concentrations of dextrose solutions. Drop wise and ultrasonic methods were used and compared with each other. The dynamic range of methods with limit of detection and relative standard deviations were obtained. Results for real sample (peritoneal dialysis) were satisfied.  相似文献   

5.
In this contribution, a plasmon resonance light scattering (PRLS) detection method of ferulic acid (FA) is proposed based on the formation of silver nanoparticles (NPs). It was found that, FA acted as a reducing agent in alkaline medium and could be oxidized by AgNO3, resulting in the formation of silver NPs. The formed silver NPs, which were identified by measuring the plasmon resonance absorption spectra, PRLS spectra and transmission electron microscopy (TEM) image, display characteristic plasmon resonance optical absorption and PRLS band in the visible region. It was found that the PRLS intensity, which could be easily measured using a common spectrofluorometer, was in proportion to the concentration of FA over the range from 0.2 to 2.0 μmol l−1 with the corresponding limits of determination (3σ) of 15.2 nmol l−1. With that, ferulate sodium injection samples have been detected with R.S.D. lower than 3.0% and recoveries over the range of 101.2–104.5%. On the other hand, the present reaction maybe provides the basis of an environmentally friendly approach for the synthesization of silver NPs.  相似文献   

6.
Kang CY  Xi DL  Chen YY  Jiang ZL 《Talanta》2008,74(4):867-870
A plasmon resonance scattering (PRS) method for chlorine dioxide is reported based on the oxidization of silver nanoparticles (NPs) by it, in pH 9.1 ammonia-ammonium nitrate buffer solutions. Silver NPs exhibit strong PRS signals at 470nm, and can be oxidized by ClO(2), which results in PRS quenching at 470nm. It was found that the PRS quenching intensity is proportional to the concentration of chlorine dioxide over the range of 0.0011-0.185microg/mL, with a detection limit (3sigma) of 0.00050microg/mL and the correlation coefficient of 0.9995. The method is simple, rapid and cost effective. It was applied to the determination of chlorine dioxide in drinking water, with satisfactory results.  相似文献   

7.
An optical immunosensor based on surface plasmon resonance (SPR) has been developed for immunosensing. The sensor is designed on the basis of fixing incident angle of light and measuring the reflected intensities in the wavelength range of 400-800 nm simultaneously. The SPR spectrum was shown in terms of reflected light intensities versus wavelengths of incident light. The intensity of the reflected light reaches the minimum at the resonant wavelength. Molecular self-assembling in solution is used to form the sensing membrane on gold substrate. The kinetic processes of sensing monolayer formation were studied. The basic fibroblast growth factor, a kind of basic polypeptide, was determined in the concentration range of 0.24-9.6 μg/ml. Under optimum experimental conditions, the sensor has a good repeatability, reversibility and selectivity.  相似文献   

8.
Liu X  Sun Y  Song D  Zhang Q  Tian Y  Zhang H 《Talanta》2006,68(3):1026-1031
Wavelength modulation surface plasmon resonance biosensors (SPR) using colloidal Au nanoparticles and double-linker sensing membrane enhancement are reported for determination of transferrin. The 2-mercaptoethylamine (MEA) was immobilized on the biosensor surface with traditional amine coupling method. The interaction between colloidal Au nanoparticles and MEA was investigated. The anti-transferrin was immobilized on the biosensor surface prepared with staphylococcal protein A (SPA). The interaction of the antibody and antigen was monitored in real time. The good response was obtained in the concentration range 1-20, 0.1-20 and 0.05-20 μg/mL for directly immune assay, double-linker assay and colloidal Au-amplified assay. The result clearly demonstrates that these methods may obtain significantly enhancement of sensitivity for the wavelength modulation SPR biosensor.  相似文献   

9.
Localized surface plasmon resonance (LSPR) by silver nanoparticles that are photochemically incorporated into an electrode-supported TiO(2) nanoparticulate framework enhances the extinction of a subsequently adsorbed dye (the ruthenium-containing molecule, N719). The enhancement arises from both an increase in the dye's effective absorption cross section and a modest increase in the framework surface area. Deployment of the silver-modified assembly as a photoanode in dye-sensitized solar cells leads to light-to-electrical energy conversion with an overall efficiency of 8.9%. This represents a 25% improvement over the performance of otherwise identical solar cells lacking corrosion-protected silver nanoparticles. As one would expect based on increased dye loading and electromagnetic field enhanced (LSPR-enhanced) absorption, the improvement is manifested chiefly as an increase in photocurrent density ascribable to improved light harvesting.  相似文献   

10.
11.
To perform biosensing using nanoparticles in solution, silver particles were coated with bovine serum albumin (BSA) and polyvinyl alcohol (PVA) as control stabilizer. The plasmon resonance (420 nm) of the silver nanoparticles in solution was shifted slightly to longer wavelength (443 nm) when they were coated with BSA. The biointeractions of these engineered nanoparticles were studied using a mouse model. No significant changes in behavior or toxicity were observed. The nanoparticles were detected in all tissues including the brain. Antibody recognition was monitored via the change in light absorption which accompanied binding, indicating that the particles can be used as a biosensor to gain more insight into cellular mechanisms governing the function of organs in general, and the blood brain barrier (BBB) and brain in particular.  相似文献   

12.
The use of nanoparticles (NPs) can substantially improve the analytical performance of surface plasmon resonance imaging (SPRi) in general, and in DNA sensing in particular. In this work, we report on the modification of the gold surface of commercial biochips with gold nanospheres, silica-coated gold nanoshells, and silver nanoprisms, respectively. The NPs were tethered onto the surface of the chip and functionalized with a DNA probe. The effects of tethering conditions and varying nanostructures on the SPRi signals were evaluated via hybridization assays. The results showed that coupling between planar surface plasmons and electric fields, generated by localized surface plasmons of the NPs, is mandatory for signal enhancement. Silver nanoprisms gave the best results in improving the signal change at a target DNA concentration of <50 nM by +50 % (compared to a conventional SPRi chip). The limit of detection for the target DNA was 0.5 nM which is 5 times less than in conventional SPRi.
Figure
?  相似文献   

13.
An indirect colorimetric method is presented for detection of trace amounts of hydroquinone (1), catechol (2) and pyrogallol (3). The reduction of AuCl4(-) to Gold nanoparticles (Au-NPs) by these phenolic compounds in the presence of cetyltrimethylammonium chloride (CTAC) produced very intense surface plasmon resonance peak of Au-NPs. The plasmon absorbance of Au-NPs allows the quantitative colorimetric detection of the phenolic compounds. The calibration curves derived from the changes in absorbance at lambda = 568 nm were linear with concentration of hydroquinone, catechol and pyrogallol in the range of 7.0 x 10(-7) to 1.0 x 10(-4)M, 6.0 x 10(-6) to 2.0 x 10(-4)M and 6.0 x 10(-7) to 1.0 x 10(-4)M, respectively. The detection limits were 5.3 x 10(-7), 2.5 x 10(-6) and 3.2 x 10(-7)M for the hydroquinone, catechol and pyrogallol, respectively. The method was applied satisfactorily to the determination of phenolic compounds in water samples and pharmaceutical formulations.  相似文献   

14.
A simple and effective procedure is proposed for spectrophotometric determination of catecholamines; Dopamine (1), L-Dopa (2) and Adrenaline (3). It was found that the reduction of Ag+ to silver nanoparticles (Ag-NPs) by these catecholamines in the presence of polyvinylpyrrolidone (PVP) as a stabilizing agent produced very intense surface plasmon resonance peak of Ag-NPs. The plasmon absorbance of the Ag-NPs allows the quantitative spectrophotometric detection of the catecholamines. The calibration curves derived from the changes in absorbance at λ = 440 nm were linear with concentration of Dopamine, Levodopa and Adrenaline in the range of 3.2×10?6? 2.0×10?5 M, 1.6×10?7 ? 1.0×10?5 M, 1.5×10?6? 4.0×10?5 M, respectively. The detection limits (3σ) were 1.2×10?6 M, 8.6 ×10?8 M, 9.7 ×10?7 M for the Dopamine, L-Dopa and Adrenaline, respectively. The method was applied successfully to the determination of catecholamines in Ringer’s injection serum.  相似文献   

15.
In this contribution, a simple strategy for the detection of hydroquinone (HQ) is proposed based on the localized surface plasmon resonance light scattering (LSPR-LS) of the silver nanoparticles (AgNPs) formed through the modified silver mirror reaction. The redox reaction between HQ and silver ammonia occurred in the coexistence of sodium hydroxide and ammonia at room temperature, where silver ammonia was reduced by HQ and resulted in the formation of AgNPs without adding the AgNPs seeds. The formed AgNPs were demonstrated to be monodisperse and uniform by transmission electron microscopy (TEM) image. We also studied the localized surface plasmon resonance absorption (LSPR-A) and LSPR-LS spectra using both a UV-vis spectrophotometer and a common spectrofluorometer, and obtained a good agreement between experiments. By carefully optimizing the amount of NaOH and ammonia of the reaction conditions, we were able to obtain the highest net intensity of LSPR-LS on the concentrations of HQ. On the basis of experimental studies, the LSPR-LS intensity enhanced linearly over the range 0.4-2.5 μmol L(-1) with the corresponding limits of determination (3σ) of 70.6 nmol L(-1). With that, the present approach was applied to detect HQ in water samples with satisfactory results.  相似文献   

16.
Triangular silver nanoparticles ( approximately 100 nm wide and 50 nm high) have remarkable optical properties. In particular, the peak extinction wavelength, lambda(max) of their localized surface plasmon resonance (LSPR) spectrum is unexpectedly sensitive to nanoparticle size, shape, and local ( approximately 10-30 nm) external dielectric environment. This sensitivity of the LSPR lambda(max) to the nanoenvironment has allowed us to develop a new class of nanoscale affinity biosensors. The essential characteristics and operational principles of these LSPR nanobiosensors will be illustrated using the well-studied biotin-streptavidin system. Exposure of biotin-functionalized Ag nanotriangles to 100 nM streptavidin (SA) caused a 27.0 nm red-shift in the LSPR lambda(max). The LSPR lambda(max) shift, DeltaR/DeltaR(max), versus [SA] response curve was measured over the concentration range 10(-)(15) M < [SA] < 10(-)(6) M. Comparison of the data with the theoretical normalized response expected for 1:1 binding of a ligand to a multivalent receptor with different sites but invariant affinities yielded approximate values for the saturation response, DeltaR(max) = 26.5 nm, and the surface-confined thermodynamic binding constant K(a,surf) = 10(11) M(-)(1). At present, the limit of detection (LOD) for the LSPR nanobiosensor is found to be in the low-picomolar to high-femtomolar region. A strategy to amplify the response of the LSPR nanobiosensor using biotinylated Au colloids and thereby further improve the LOD is demonstrated. Several control experiments were performed to define the LSPR nanobiosensor's response to nonspecific binding as well as to demonstrate its response to the specific binding of another protein. These include the following: (1) electrostatic binding of SA to a nonbiotinylated surface, (2) nonspecific interactions of prebiotinylated SA to a biotinylated surface, (3) nonspecific interactions of bovine serum albumin to a biotinylated surface, and (4) specific binding of anti-biotin to a biotinylated surface. The LSPR nanobiosensor provides a pathway to ultrasensitive biodetection experiments with extremely simple, small, light, robust, low-cost instrumentation that will greatly facilitate field-portable environmental or point-of-service medical diagnostic applications.  相似文献   

17.
Wang H  Chen D  Wei Y  Chang Y  Zhao J 《Analytical sciences》2011,27(9):937-941
A simple, low toxic, sensitive strategy based on the localized surface plasmon resonance light scattering (LSPR-LS) properties of silver nanoparticles (AgNPs) is introduced for the detection of gallic acid (GA). It was found that the silver ammonium complex, [Ag(NH(3))(2)](+)(aq), could be reduced in the alkaline medium by GA at room temperature; this reaction formed dispersed AgNPs. Transmission electron microscopy analyses were performed to ascertain the formation of AgNPs. UV-visible spectra revealed the localized surface plasmon resonance (LSPR) absorption at 410 nm corresponding to the LSPR of AgNPs. On these basis, we could quantify the GA concentration in the range of 4 × 10(-7) - 5 × 10(-6) mol L(-1) in the optimized experimental conditions. This method was used for determining the concentration of GA in artificial samples with satisfactory results. The detailed mechanism underlying this special phenomenon was elucidated.  相似文献   

18.
Silver nanostructures are containers for surface plasmons - the collective oscillation of conduction electrons in phase with incident light. By controlling the shape of the container, one can control the ways in which electrons oscillate, and in turn how the nanostructure scatters light, absorbs light, and enhances local electric fields. With a series of discrete dipole approximation (DDA) calculations, each of a distinctive morphology, we illustrate how shape control can tune the optical properties of silver nanostructures. Calculated predictions are validated by experimental measurements performed on nanocubes with controllable corner truncation, right bipyramids, and pentagonal nanowires. Control of nanostructure shape allows optimization of plasmon resonance for molecular detection and spectroscopy.  相似文献   

19.
A simple and non-separative analytical method for selective determination of amylose in Iranian rice has been developed. It was based on the reduction of silver ions by amylose and production of Ag nanoparticles, which exhibit surface plasmon resonance (SPR) spectra in the ultraviolet/visible region. The formation of Ag nanoparticles in the presence of amylose was monitored by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The experimental conditions were optimized to obtain the highest yield for nanoparticle formation. Partial least square (PLS) regression as an efficient multivariate spectral calibration method was employed to make a connection between the SPR spectra of the generated Ag nanoparticles and the amylose content (AC) of the rice starch. The number of PLS latent variables was optimized by leave-one-out cross-validation utilizing prediction residual error sum of square (PRESS). The proposed model exhibited a high ability for prediction of amylose concentration in both standard starch samples and real rice samples prepared from different regions of Iran. The relative errors of prediction were almost lower than ±5% for different real samples and the detection limit was 3.23 weight percent of amylose in rice. In comparison to the reference method (Juliano method), the proposed method is simpler and does not need tedious sample preprocessing steps.  相似文献   

20.
基于纳米Ag粒子的表面等离子体共振光谱测定CN-的研究   总被引:1,自引:0,他引:1  
利用UV-辐照光化学还原法制备了平均直径为20 nm的黄色胶体银溶液,银粒子的表面等离子体共振(SPR)光谱的最大吸收波长位于399 nm处,摩尔吸光系数为1.3×104 L·mol-1·cm-1.利用Ag粒子与CN-反应的动力学特性,研究了SPR光谱的λMAX吸光与CN-浓度的关系及其影响因素,拟定了检测环境水样中隐色、有毒CN-离子的方法.标准工作曲线的线性相关系数0.9995,测定下限0.05 μg/mL, 相对标准偏差RSD(%)≤6.1 (n=5).对Ag粒子与CN-反应的机理进行了探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号