首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究表面活性剂亲水亲油平衡值(HLB值)与渣油乳化体系分散性和电学性质的关系,采用粒径和粒径分布相结合的方法来评价乳化体系的分散性,利用电导率值的变化来反应体系电学性质的差异,以表面活性剂B和A复合成实验用渣油乳化分散剂来分散渣油加氢裂化水溶性盐,考察了表面活性剂HLB值对渣油包盐水体系的分散性和电学性质的影响。结果表明,随表面活性剂HLB值从小到大的变化,不同水溶性盐在同种油中的分散性和电学性质不同,同种盐在不同油中的变化也存在着差异。乳化体系的分散性及电学性质随着HLB值的增加呈非线性变化。  相似文献   

2.
The objective of this work was to formulate and to further improve the stability of emulsions based on thyme essential oil. Several nonionic surfactants of different nature and with different hydrophilic?lipophilic balance (HLB) values were investigated. The surfactant with optimal HLB found for the thyme essential oil was Appyclean 6548 (HLB: 9-9.5). Afterwards, stabilizing biopolymers were added in order to improve emulsion stability. Properties of emulsions were evaluated in terms of droplet size and physical stability. Thyme essential oil/W emulsions formulated with a new biodegradable emulsifier (alkyl polypentoside) and welan gum as stabilizer were obtained with high shelf-life.  相似文献   

3.
Formulation optimization of emulsifiers for preparing multiple emulsions was performed in respect of stability by using artificial neural network (ANN) technique. Stability of multiple emulsions was expressed by the percentage of reserved emulsion volume of freshly prepared sample after centrifugation. Individual properties of multiple emulsions such as droplet size, δ, viscosity of the primary and the multiple emulsions were also considered. A back‐propagation (BP) network was well trained with experimental data pairs and then used as an interpolating function to estimate the stability of emulsions of different formulations. It is found that using mixtures of Span 80 and Tween 80 with different mass ratio as both lipophilic and hydrophilic emulsifiers, multiple W/O/W emulsions can be prepared and the stability is sensitive to the mixed HLB numbers and concentration of the emulsifiers. By feeding ANN with 39 pairs of experimental data, the ANN is well trained and can predict the influences of several formulation variables to the immediate emulsions stability. The validation examination indicated that the immediate stability of the emulsions predicted by the ANN is in good agreement with measured values. ANN therefore could be a powerful tool for rapid screening emulsifier formulation. However, the long‐term stability of the emulsions is not good, possibly due to the variation of the HLB number of the mixed monolayers by diffusion of emulsifier molecules, but can be greatly improved by using a polymer surfactant Arlacel P135 to replace the lipophilic emulsifier.  相似文献   

4.
Six oil soluble nonionic surfactants with different HLBs have been prepared. Their HLBs situate between 3.9 and 6.7. Transesterification was carried out for glycerol and triethanol amine with oleic acid at different moles to obtain six emusilifiers. They named glycerol momooleate (I), glycerol diooleate (II), glycerol trioleate (III), triethanol amine mono-, di- and tri-oleate (IV), (V,) and (VI). The chemical structure was confirmed using; the elemental analysis, FTIR and 1HNMR. They were evaluated as a primary emulsifiers (PE) for thdrilling fluids (oil base mud) comparing with a currently used primary emulsifier (Fc). The water in oil base mud (w/o emulsions) was prepared. The concentration of emulsifiers and their HLB exhibited interesting rheology properties including shear-thinning behavior, yield value, viscoelastic effects, thixtropy, gel strength, and filtration loss. The rheology properties of such emulsions strongly depended on the average size distribution of the dispersed droplets that could be varied both with the bulk concentration and HLB value of the emulsifiers. The interfacial and surface properties of these emulsifiers suggest that the droplet size of the dispersed phase and bulk concentration are strongly related to the HLB value of emulsifiers. The w/o emulsion (mud formulation) stability is sensitive to the droplet size of the dispersed phase and HLB value of the used emulsifier. The results were discussed on the light the chemical structure of the primary emulsifiers and the emulsion ingredients.  相似文献   

5.
The characteristics of mixed phospholipids were examined when used as dispersing agents and emulsifiers. Synthesized phospholipids were mixed to investigate the potential effects of different hydrophilic or lipophilic groups on emulsification and dispersion. To examine the effects of the hydrophilic polar head group on the dispersing or emulsifying potency of phospholipids, l--phosphatidylcholine dimyristoyl (DMPC) and l--phosphatidylethanolamine dimyristoyl (DMPE) were mixed in various ratios. Moreover, all combinations of two kinds of phosphatidylcholines (PCs) out of l--phosphatidylcholine dilauroyl (DLPC), DMPC, l--phosphatidylcholine dipalmitoyl (DPPC) and l--phosphatidylcholine distearoyl (DSPC) were tested (50:50, w/w) to examine the effects of the hydrophobic carbon chains on the dispersing or emulsifying potency of phospholipids. Mean diameters of vesicles and O/W emulsions prepared by sonication were measured. Vesicles prepared with DMPC–DMPE mixtures gave larger particle sizes than those of DMPC alone. Particle sizes of vesicles prepared with a mixture of two kinds of PCs increased when adding a PC with a longer carbon chain, while particle sizes in a mixture with a PC having a shorter carbon chain was comparable to those in pure PC. In vesicles that were generated by hydration of phospholipids and had a bilayer form, the physical form of the phospholipids consisting of bilayers was thought to be an important factor influencing particle sizes. Among the emulsions, DMPC–DMPE mixtures gave a similar droplet size to DMPC alone. Droplet size in emulsions prepared with a mixture of two kinds of PCs had a strong positive correlation with the total number of carbons, which corresponds to hydrophilic–lipophilic balance (HLB). In O/W emulsions, in which phospholipids were absorbed at water–oil interfaces and which have a single layer form, HLB was thought to be a major factor in the determination of particle size; likewise with non-ionic emulsifiers.  相似文献   

6.
Emulsion copolymerizations of styrene and methacrylic acid (MAA) with various nonionic emulsifiers having a hydrophilic–lipophilic balance (HLB) range of 13.7–17.2 were performed to clarify the influence of emulsification state on polymerization. The emulsification state with a lower-HLB value emulsifier was worse than that with a higher one. In the lowest HLB value, MAA was predominantly polymerized over styrene in the early stage of the copolymerization, resulting in predominant (heterogeneous) distribution of MAA units in the inside of the final polymer particles. In the higher-HLB emulsifiers, styrene and MAA were simultaneously copolymerized, resulting in a homogeneous MAA distribution. The percentage of incorporation of the nonionic emulsifier inside the particles was the highest (49% based on the total amount of the emulsifier) in the lowest HLB, whereas it was 1% in the highest HLB. Part CCLXXXIV of the series “Studies on suspension and emulsion”.  相似文献   

7.
Oil-in-water emulsions are usually formed during oil production and treatment. Before being discarded, such dispersions should be treated. In order to improve the oil–water separation process using physical processes (decantation, flotation, centrifugation, etc.) the particle size of the disperse phase should be increased. This may be achieved through flocculation, which consists in the agglomeration of various particles or drops, using, as flocculating agents, high molecular weight hydrophilic macromolecules. A few studies have been carried out on the flocculation of finely divided oil drops in brine with the aid of generally ionic polyelectrolytes. This work shows the results obtained using nonionic polymers as flocculants. Commercial samples of poly(ethylene oxide-b-propylene oxide) and poly(vinyl alcohol) were evaluated through flocculation–flotation tests as well as the drop size distribution. The performance of such additives as flocculants for oil–water dispersions is related to their structure, composition, molecular weight and hydrophilic–lipophilic balance. The composition of the produced water is also an important parameter when choosing the features of the flocculant additive.  相似文献   

8.
Equal ratios of medium chainlength triglycerides and water were emulsified with 5% w/w of mixed nonionic surfactants with various hydrophilic-lipophilic balance (HLB) values. The HLB numbers ranged from 15 to 6.6. Emulsifiers with HLB numbers 15, 14.2, 13.3, and 12.5 produced low viscosity milk-like liquid, 11.6, 10.8, 10, and 9.1 produced cream, 8.3 and 7.4 produced paste like consistency, and 6.6 produced a coarse emulsion. The effects of HLB on stability, particle size, and rheological properties were studied. Emulsifiers with intermediate HLB numbers produced emulsions that are stable for 30 days at room temperature but a thin layer of oil on top of the emulsion was observed at 45°C. The thin oil layer can be redispersed with mild agitation without loss of stability. Emulsifiers with high and low HLB number (15, 14.2, 13.3, 6.6) produced emulsions that were unstable at both storage conditions. The stability of the emulsions correlate well with the particle size. The curve flow plot for most of the emulsions fit the Herschel Bulkley model. They exhibit a pseudoplastic type behavior. Emulsifiers with different HLB numbers also affect the shear stress at zero shear, τ0, and the yield value, τ.  相似文献   

9.
We studied thermal transitions and physical stability of oil-in-water emulsions containing different milk fat compositions, arising from anhydrous milk fat alone (AMF) or in mixture (2:1 mass ratio) with a high melting temperature (AMF–HMT) or a low melting temperature (AMF–LMT) fraction. Changes in thermal transitions in bulk fat and emulsion samples were monitored by differential scanning calorimetry (DSC) under controlled cooling and reheating cycles performed between 50 and –45°C (5°C min–1). Comparison between bulk fat samples and emulsions indicated similar values of melting completion temperature, whereas initial temperature of fat crystallization (Tonset) seemed to be differently affected by storage temperature depending on triacylglycerols (TAG) composition. After storage at 4°C, Tonset values were very similar for emulsified and non-emulsified AMF–HMT blend, whereas they were lower (by approx. 6°C) for emulsions containing AMF or mixture of AMF–LMT fraction. After storage at –30°C, Tonset values of re-crystallization were higher in emulsion samples than in bulk fat blends, whatever the TAG fat composition. Light scattering measurements and fluorescence microscopic observations indicated differences in fat droplet aggregation-coalescence under freeze-thaw procedure, depending on emulsion fat composition. It appeared that under quiescent freezing, emulsion containing AMF–LMT fraction was much less resistant to fat droplet aggregation-coalescence than emulsions containing AMF or AMF–HMT fraction. Our results indicated the role of fat droplet liquid-solid content on emulsion stability.  相似文献   

10.
A three-step model of the transitional phase inversion (TPI) process for the formation of water-in-oil (W/O) emulsions is presented. Three types of emulsions exist in an emulsification process at different oil–water ratios and hydrophilic–lipophilic balance (HLB). A stable W/O emulsion was obtained using Sorbitan oleate (Span 80) and polyoxyethylenesorbitan monooleate (Tween 80) with a specified HLB and oil volume fraction. Oil was added into water, which contained the water-soluble surfactant, to dissolve the oil-soluble surfactant. This route allowed TPI to occur, and an interesting emulsification process was observed by varying the HLB, which corresponded to the change in the oil–water ratio. Two types of emulsions in the emulsification process were found: transition emulsion 1 (W/O/W high internal phase emulsion) and target emulsion 2 (W/O emulsion with low viscosity). This study describes the changes that occurred in the emulsification process.  相似文献   

11.
The instability of emulsion explosive matrices is mainly due to the crystallization of interphases as oversaturated aqueous solutions of nitrate salts. The principal features of crystallization for this type of emulsion have been previously studied; however, there is no consensus regarding the mechanism of crystallization for an emulsion explosive matrix. This study is devoted to the investigation of the crystallization behavior of interphase droplets. By monitoring the mass change of emulsions during their aging process, it was found that the mass of the emulsions remains almost constant and that water still completely existed in the emulsion system after crystallization of the interphase droplets. The ammonium nitrate (NH4NO3) crystals in the emulsion explosive matrices were then separated successfully using a simple method. The thermal behavior of pure NH4NO3 and crystals in the emulsion explosive matrices was studied by differential scanning calorimetry-thermogravimetric analysis (DSC-TG) at a heating rate of 10?K/min. The experimental results show that the thermal behavior of the crystals in the emulsions was exactly the same as for pure NH4NO3, meaning that only NH4NO3 crystallized from the emulsion explosive matrices with no water crystals. Thus, it could be concluded that after crystallization of the dispersed drops in the emulsion explosive matrices, pure NH4NO3 crystals and new smaller droplets were produced.  相似文献   

12.
Hydrophobic curcumin in temulawak extract and hydrophilic betacyanin in red dragon fruit extract are high-value bioactive compounds with extensive applications in functional food. In this study, these extracts were encapsulated in water-in-oil-in-water (w/o/w) nanoemulsions as a delivery system using a two-step high-energy emulsification method. PGPR and Span 20 were used as lipophilic emulsifiers for the primary w/o emulsion. The most stable w/o/w formulation with the least oil phase separation of 5% v/v consisted of w/o emulsion (15% w/w) and Tween 80 (1.5% w/w) as hydrophilic emulsifier. The formulation was characterized by a 189-nm mean droplet diameter, 0.16 polydispersity index, and –32 mV zeta potential. The freeze–thaw stability may be attributed to the combination of low w/o emulsion content and high Tween 80 concentration in the outer water phase of the w/o/w nanoemulsions used in this study. The IC50 values of the nanoemulsion and the red dragon fruit extract were similar. It means that the higher concentration of curcumin in the nanoemulsions and the lower IC50 value of temulawak extract ensured sufficient antioxidant activities of the w/o/w nanoemulsions.  相似文献   

13.
Factors influencing water-in-oil emulsion stability during freeze/thaw-cycling, namely interfacial crystallization vs. network crystallization and the sequence of crystallization events (i.e., dispersed vs. continuous phase or vice versa), are assessed. We show that destabilization is most apparent with a liquid-state emulsifier and a continuous oil phase that solidifies prior to the dispersed phase. Emulsions stable to F/T-cycling are obtained when the emulsifier crystallizes at the oil–water interface or in emulsions where the continuous phase crystallizes after the dispersed aqueous phase. The materials used are two food-grade oil-soluble emulsifiers – polyglycerol polyricinoleate (PGPR) and glycerol monostearin (GMS) and two continuous oil phases with differing crystallization temperatures – canola oil and coconut oil. Emulsion stability is assessed with pulsed field gradient NMR droplet size analysis, sedimentation, microscopy and differential scanning calorimetry. This study demonstrates the sequence of crystallization events and the physical state of the surfactant at the oil–water interface strongly impact the freeze–thaw stability of water-in-oil emulsions.  相似文献   

14.
In this work, formations of water-in-diesel fuel nanoemulsions using water/mixed nonionic surfactant/diesel fuel system has been studied. The high-energy emulsification method was used to form three emulsions using different water contents: 5, 10, and 14% (v/v) namely; E1, E2, and E3, respectively. These nanoemulsions were stabilized with emulsifiers having different hydrophilic lipophilic balance (HLB), namely, Span 80 (HLB = 4.3), Emarol 85 (HLB = 11), and their mixture (SE) with HLB = 10. The effect of water on the droplet size formation has been investigated. The interfacial tension and thermodynamic properties of the individual and emulsifiers blends have been studied. The interfacial tension (γ) measurements at 30°C were used to determine the critical micelle concentration (CMC) and surface active properties of these emulsifiers. The water droplet sizes were measured by dynamic light scattering (DLS). From the obtained data, it was found that mean sizes between 19.3 and 39 nm were obtained depending on the water content and concentration of blend emulsifiers (SE). Also, the results show that the interfacial tension (γ) gives minimum value (10.85 mN/m) for SE comparing with individual emulsifier (17.13 and 12.77 mN/m) for Span 80 and Emarol 85, respectively. The visual inspection by transmission electron microscopy showed that the obtained results support the data obtained by dynamic light scattering.  相似文献   

15.
Polymeric emulsifiers provide exceptional stability to oil-in-water, water-in-oil or multiple emulsions by their steric stabilization. Pemulens as polymeric emulsifiers are able to stabilize o/w type emulsions because their short lipophilic part integrates into the oil droplets while their long hydrophilic part forms a micro gel around the droplet. In our present study the microstructure and integration of the polymeric emulsifier at the water-oil interface was investigated with thermogravimetric and microscopical methods. It was established that depending on the amount of both of the polymeric emulsifier and added coemulsifier the microstructure of the system changes.  相似文献   

16.
A series of neutral mixed-ligand [HB(pz)3]Ag(PR3) silver(I) complexes (PR3 = tertiary phosphine, [HB(pz)3] = tris(pyrazolyl)borate anion), and the corresponding homoleptic [Ag(PR3)4]BF4 compounds have been synthesized and fully characterized. Silver compounds were screened for their antiproliferative activities against a wide panel of human cancer cells derived from solid tumors and endowed with different platinum drug sensitivity. Mixed-ligand complexes were generally more effective than the corresponding homoleptic derivatives, but the most active compounds were [HB(pz)3]Ag(PPh3) (5) and [Ag(PPh3)4]BF4 (10), both comprising the lipophilic PPh3 phosphine ligand. Detailed mechanistic studies revealed that both homoleptic and heteroleptic silver complexes strongly and selectively inhibit the selenoenzyme thioredoxin reductase both as isolated enzyme and in human ovarian cancer cells (half inhibition concentration values in the nanomolar range) causing the disruption of cellular thiol-redox homeostasis, and leading to apoptotic cell death. Moreover, for heteroleptic Ag(I) derivatives, an additional ability to damage nuclear DNA has been detected. These results confirm the importance of the type of silver ion coordinating ligands in affecting the biological behavior of the overall corresponding silver complexes, besides in terms of hydrophilic–lipophilic balance, also in terms of biological mechanism of action, such as interaction with DNA and/or thioredoxin reductase.  相似文献   

17.
To find an optimal formulation of oil-in-water (O/W) emulsions (φo = 0.05), the effect of emulsifier nature and concentration, agitation speed, emulsifying time, storage temperature and their mutual interactions on the properties and behavior of these dispersions is evaluated by means of an experimental design (Nemrodw software). Long-term emulsion stability is monitored by multiple light scattering (Turbiscan ags) and acoustic attenuation spectroscopy (Ultrasizer). After matching surfactant HLB and oil required HLB, a model giving the Sauter diameter as a function of emulsifier concentration, agitation speed and emulsification time is proposed. The highest stability of C12E4-stabilized O/W emulsions is observed with 1% emulsifier.  相似文献   

18.
The aim of this work was to obtain and evaluate the stability of new emulsion systems, in which diacylglycerols derived from enzymatic interesterification of mutton tallow with hemp oil were used as emulsifiers. In order to achieve a higher content of the polar fat fraction in the final fat blend, a different amount of water was added to the reaction mixtures. The modified fats with a mixture of mono and diacylglycerols served as a fat base for emulsions. Based on the results of Turbiscan test, the droplet size, emulsion texture, and studies of rheological properties, it was found that addition of water to the reaction mixture in the range of 1.00–1.25%, wt./wt., caused the formation of a sufficient amount of emulsifiers stabilizing the dispersion system.

The novelty of this work was to determine the optimal amount of water added to the interesterification of mutton tallow with vegetable oil, ensuring the synthesis of a high-efficiency emulsifying system. Another new aspect of this work was to show that the diacylglycerols obtained during such fat modification constitute effective emulsifiers for new stable emulsion systems that may find potential use as food emulsions (dressings) or cosmetic products dedicated to sensitive skin.  相似文献   


19.
Double inversion of emulsions induced by salt concentration   总被引:1,自引:0,他引:1  
The effects of salt on emulsions containing sorbitan oleate (Span 80) and Laponite particles were investigated. Surprisingly, a novel double phase inversion was induced by simply changing the salt concentration. At fixed concentration of Laponite particles in the aqueous phase and surfactant in paraffin oil, emulsions are oil in water (o/w) when the concentration of NaCl is lower than 5 mM. Emulsions of water in oil (w/o) are obtained when the NaCl concentration is between 5 and 20 mM. Then the emulsions invert to o/w when the salt concentration is higher than 50 mM. In this process, different emulsifiers dominate the composition of the interfacial layer, and the emulsion type is correspondingly controlled. When the salt concentration is low in the aqueous dispersion of Laponite, the particles are discrete and can move to the interface freely. Therefore, the emulsions are stabilized by particles and surfactant, and the type is o/w as particles are in domination. At intermediate salt concentrations, the aqueous dispersions of Laponite are gel-like, the viscosity is high, and the transition of the particles from the aqueous phase to the interface is inhibited. The emulsions are stabilized mainly by lipophilic surfactant, and w/o emulsions are obtained. For high salt concentration, flocculation occurs and the viscosity of the dispersion is reduced; thus, the adsorption of particles is promoted and the type of emulsions inverts to o/w. Laser-induced fluorescent confocal micrographs and cryo transmission electron microscopy clearly confirm the adsorption of Laponite particles on the surface of o/w emulsion droplets, whereas the accumulation of particles at the w/o emulsion droplet surfaces was not observed. This mechanism is also supported by the results of rheology and interfacial tension measurements.  相似文献   

20.
The linear isopiestic relation has been used, together with the fundamental Butler equations, to establish a new simple predictive equation for the surface tensions of the mixed ionic solutions. This newly proposed equation can provide the surface tensions of multicomponent solutions using only the data of the corresponding binary subsystems of equal water activity. No binary interaction parameters are required. The predictive capability of the equation has been tested by comparing with the experimental data of the surface tensions for the systems HCl–LiCl–H2O, HCl–NaClO4–H2O, HCl–CaCl2–H2O, HCl–SrCl2–H2O, HCl–BaCl2–H2O, LiCl–NaCl–H2O, LiCl–KCl–H2O, NaCl–KCl–H2O, KNO3–NH4NO3–H2O, and LiCl–NaCl–KCl–H2O at 298.15 K; KNO3–NH4Cl–H2O, KBr–Sr(NO3)2–H2O, NaNO3–Sr(NO3)2–H2O, NaNO3 –(NH4)2SO4–H2O, KNO3–Sr(NO3)2– H2O, NH4Cl–Sr(NO3)2–H2O, NH4Cl– (NH4)2SO4–H2O, KBr–KCl–H2O, KBr–KCl–NH4Cl–H2O, KBr–KNO3– Sr(NO3)2–H2O, KBr–NH4Cl–Sr(NO3)2–H2O, KNO3–NH4Cl–Sr(NO3)2–H2O, and NH4Cl–(NH4)2SO4–NaNO3–H2O at 291.15 K; and KBr–NaBr–H2O at temperatures from 283.15 to 308.15 K. The agreement is generally quite good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号