首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
Laser induced acoustic desorption (LIAD) has been used for the first time to study the parent ion production and fragmentation mechanisms of a biological molecule in an intense femtosecond (fs) laser field. The photoacoustic shock wave generated in the analyte substrate (thin Ta foil) has been simulated using the hydrodynamic HYADES code, and the full LIAD process has been experimentally characterised as a function of the desorption UV-laser pulse parameters. Observed neutral plumes of densities >10(9) cm(-3) which are free from solvent or matrix contamination demonstrate the suitability and potential of the source for studying ultrafast dynamics in the gas phase using fs laser pulses. Results obtained with phenylalanine show that through manipulation of fundamental femtosecond laser parameters (such as pulse length, intensity and wavelength), energy deposition within the molecule can be controlled to allow enhancement of parent ion production or generation of characteristic fragmentation patterns. In particular by reducing the pulse length to a timescale equivalent to the fastest vibrational periods in the molecule, we demonstrate how fragmentation of the molecule can be minimised whilst maintaining a high ionisation efficiency.  相似文献   

2.
Photoionization and -fragmentation of Na(NH3)n clusters by 170 fs and 8 ns laser pulses are studied with photon energies of 2.98 eV to 3.46 eV. In the reflectron timeof- flight mass spectra a strong metastable loss of NH3 is observed independent of the laser pulse length. From the fragmentation rate constants the internal energy of the cluster ions prior to the fragmentation process is determined by an RRK approach.  相似文献   

3.
The possibility that chemical reactions may be controlled by tailored femtosecond laser pulses has inspired recent studies that take advantage of their short pulse duration, comparable to intramolecular dynamics, and high peak intensity to fragment and ionize molecules. In this article, we present an experimental quest to control the chemical reactions that take place when isolated molecules interact with shaped near-infrared laser pulses with peak intensities ranging from 1013 to 1016 W/cm2. Through the exhaustive evaluation of hundreds of thousands of experiments, we methodically evaluated the molecular response of 16 compounds, including isomers, to the tailored light fields, as monitored by time-of-flight mass spectrometry. Analysis of the experimental data, taking into account its statistical significance, leads us to uncover important trends regarding the interaction of isolated molecules with an intense laser field. Despite the energetics involved in fragmentation and ionization, the integrated second-harmonic generation of a given laser pulse (ISHG), which was recorded as an independent diagnostic parameter, was found to be linearly proportional to the total ion yield (IMS) generated by that pulse in all of our pulse shaping measurements. Order of magnitude laser control over the relative yields of different fragment ions was observed for most of the molecules studied; the fragmentation yields were found to vary monotonically with IMS and/or ISHG. When the extensive changes in fragmentation yields as a function of IMS were compared for different phase functions, we found essentially identical results. This observation implies that fragmentation depends on a parameter that is responsible for IMS and independent from the particular time-frequency structure of the shaped laser pulse. With additional experiments, we found that individual ion yields depend only on the average pulse duration, implying that coherence does not play a role in the observed changes in yield as a function of pulse shaping. These findings were consistently observed for all molecules studied (p-, m-, o-nitrotoluene, 2,4-dinitrotoluene, benzene, toluene, naphthalene, azulene, acetone, acetyl chloride, acetophenone, p-chrolobenzonitrile, N,N-dimethylformamide, dimethyl phosphate, 2-chloroethyl ethyl sulfide, and tricarbonyl-[eta5-1-methyl-2,4-cyclopentadien-1-yl]-manganese). The exception to our conclusion is that the yield of small singly-charged fragments resulting from a multiple ionization process in a subset of molecules, were found to be highly sensitive to the phase structure of the intense pulses. This coherent process plays a minimal role in photofragmentation; therefore, we consider it an exception rather than a rule. Changes in the fragmentation process are dependent on molecular structure, as evidenced in a number of isomers, therefore femtosecond laser fragmentation could provide a practical dimension to analytical chemistry techniques.  相似文献   

4.
This article presents a new perspective on laser control based on insights into the effect of spectral phase on nonlinear optical processes. Gaining this understanding requires the systematic evaluation of the molecular response as a function of a series of pre-defined accurately shaped laser pulses. The effort required is rewarded with robust, highly reproducible, results. This approach is illustrated by results on selective two-photon excitation microscopy of biological samples, where higher signal and less photobleaching damage are achieved by accurate phase measurement and elimination of high-order phase distortions from the ultrashort laser pulses. A similar systematic approach applied to laser control of gas phase chemical reactions reveals surprising general trends. Molecular fragmentation pattern is found to be dependent on phase shaping. Differently shaped pulses with similar pulse duration have been found to produce similar fragmentation patterns. This implies that any single parameter that is proportional to the pulse duration, such as second harmonic generation intensity, allows us to predict the molecular fragmentation pattern within the experimental noise. This finding, is illustrated here for a series of isomers. Bond selectivity, coherent photochemistry and their applications are discussed in light of results from these systematic studies.  相似文献   

5.
The interaction of C60 fullerenes with 765-797 nm laser pulses as short as 9 fs at intensities of up to 3.7 x 10(14) W cm(-2) is investigated with photoion spectroscopy. The excitation time thus addressed lies well below the characteristic time scales for electron-electron and electron-phonon couplings. Thus, energy deposition into the system is separated from energy redistribution among the various electronic and nuclear degrees of freedom. Insight into fundamental photoinduced processes such as ionization and fragmentation is obtained from the analysis of the resulting mass spectra as a function of pulse duration, laser intensity, and time delay between pump and probe pulses, the latter revealing a memory effect for storing electronic energy in the system with a relaxation time of about 50 fs. Saturation intensities and relative abundances of (multiply charged) parent and fragment ions (C60(q+), q=1-6) are fingerprints for the ionization and fragmentation mechanisms. The observations indicate that for final charge states q>1 the well known C60 giant plasmon resonance is involved in creating ions and a significant amount of large fragments even with 9 fs pulses through a nonadiabatic multielectron dynamics. In contrast, for energetic reasons singly charged ions are generated by an essentially adiabatic single active electron mechanism and negligible fragmentation is found when 9 fs pulses are used. These findings promise to unravel a long standing puzzle in understanding C60 mass spectra generated by intense femtosecond laser pulses.  相似文献   

6.
Femtosecond (fs) lasers have high intensity and ultrashort pulse duration. Tunneling ionization occurs for molecules subject to such intense laser fields. We have studied the mass spectra of a variety of molecules irradiated by intense fs laser pulses. These molecules include some typical volatile organic compounds contained in human breath and in the atmosphere. The results demonstrate that all of these molecules can be ionized by intense fs laser pulses. Dominant parent ion and some characteristic ionic fragments are observed for each molecule. The degree of fragmentation can be controlled by adjusting the laser intensity. Moreover, saturation ionization can occur for each molecule by increasing the laser intensity. These features indicate that fs laser mass spectrometry can be a sensitive tool to identify and quantify volatile organic compounds in human breath.  相似文献   

7.
Polyethylene terephtalate (PET) thin films were damaged by low-energy (0–100 eV) electron irradiation to simulate the degradation of this polymer in electronic devices. The products formed were analyzed by mass spectrometry. The emission of anions from the polymer surface is associated with dissociative electron attachment (DEA) and dipolar dissociation (DD) for H, and with DD for O. The monotonic emission rise in O desorption as a function of incident electron energy is produced by mid-chain C–O–C cleavage, leading to chain scission. The signal of the positive mass fragments showed only a monotonic increase with electron energy. In this case, chemical recombination with hydrogen atoms also leads to chain scission.  相似文献   

8.
基于半经典分子动力学方法模拟超快激光诱导的C60光裂解反应.选择能量为2.0eV,半峰全宽(FWHM)分别为40和500fs的激光作用于C60分子,调节脉冲强度使其发生裂解反应,比较长短脉宽飞秒激光对C60裂解反应机理的影响.通过分析产物分布、原子平衡指数、温度以及吸收能量(包括动能、势能和电子能量),证实飞秒激光脉冲下C60的光裂解主要由电子激发态控制,非热力学效应在该反应中起重要作用.激光场的作用时间和强度均影响光裂解反应过程,而电子吸收能量饱和后光场强度的作用则变得不明显.  相似文献   

9.
Multiphoton ionization mass spectra of nonvolatile molecules laser desorbed into a supersonic beam are recorded. It is shown by indirect measurements that the laser desorption of neutrals is not mass limited, but lead to the formation of neutrals with intesities large enough for intense signals. To investigate the efficiency of the multiphoton ionization process with varying laser pulse durations, simultaneous laser pulses of 500 fs and 5 ns or 100 fs and 5 ns have been applied to the neutral beam. The energies of both femtosecond and nanosecond laser pulses are held in a comparable magnitude, and thus produce, in the resulting ion intensity, very large differences up to 4 orders of magnitude. For larger evaporated molecules (> 500 u) the ionization efficiency from nanosecond laser pulses drops significantly in comparison to femtosecond laser pulse excitation. A variety of possible reasons for the different ionization and dissociation behavior in femtosecond and nanosecond laser pulse excitations are discussed in this paper. It is rationalized that even with very short laser pulses and large molecules the “ladder switching model” for ionization and fragmentation is valid.  相似文献   

10.
Adiabatic alignment of CH(3)I, induced by the anisotropic interaction of this symmetric top molecule with the intense field of a nonresonant infrared laser pulse, has been studied using velocity map imaging. We are using photodissociation imaging with pulsed nanosecond lasers to probe the distribution of the molecular axis in the laboratory space. In contrast to the commonly used probing with femtosecond laser pulses, this technique directly yields the degree of alignment over an extended space-time volume. This will be relevant for future reactive scattering experiments with laser-aligned molecules. The obtained degree of alignment, (cos?(2)θ), measured as a function of the infrared laser intensity, agrees well with a quantum calculation for rotationally cold methyl iodide. The strong infrared laser is also found to modify the photofragmentation dynamics and open up pathways to CH(3)I(+) formation and subsequent fragmentation.  相似文献   

11.
The fragmentation pattern of CH4 was experimentally studied at an intensity of approximately 10(14) W/cm2 with laser durations varying from 8 to 110 fs. When the laser duration was 8 fs, only the primarily fragmental CH3+ ion was observed in addition to the parent CH4+ ion. When the laser duration was 30 fs, small fragmental CH2+ and H+ ions appeared. When the laser duration was 110 fs, some doubly charged ions were also observed in addition to the abundant singly charged ions. The large mass spectra difference demonstrated that the pulse duration had a strong effect on the fragmentation of the parent ion produced in the single ionization. The effect of laser intensity on the fragmentation of CH4+ was also studied for few-cycle femtosecond laser pulses. The results demonstrated that the first-return recollision between the rescattered electron and the parent ion played a significant role in the fragmentation dynamics of the parent ion. Depending on the ion-electron impact energy, the recollision excited the parent ion to a dissociated state or doubly charged state. The experimentally observed singly charged fragmental ions resulted from the recollision-induced dissociation of CH4+ or the Coulomb explosion of CH(4)2+.  相似文献   

12.
We have studied the combination of fourth-harmonic (266 nm) and fundamental (1064 nm) Nd:YAG laser pulses of the same irradiance. On a metallic target (Al), a sequence of ultraviolet (UV) and near-infrared (NIR) pulses produces deeper craters and can lead under certain conditions to analyte signal enhancements larger than those obtained with a NIR–NIR sequence. Compared to a single NIR pulse, signal enhancements by factors of approximately 30 for the Si I 288.16-nm line and 100 for the Al II 281.62-nm line were observed with double pulses of the same total energy. This effect correlates with a substantial increase in plasma temperature, with ionic lines and lines having a higher excitation energy experiencing a larger enhancement. Moreover, the optimal pulse separation is found to be larger for ionic than for neutral lines (∼3 compared to ∼0.1 μs). Another finding of this study concerns the combination of two different wavelengths (266 and 1064 nm) in a single ‘mixed-wavelength’ pulse, a scheme that also leads to an enhanced laser-induced breakdown spectroscopy (LIBS) sensitivity. It is proposed that the double-pulse and mixed-wavelength approaches are both capable of temperature and signal enhancement for the same reason: a larger portion of laser energy is absorbed in the plasma region containing the analyte atoms, instead of being absorbed at the sample surface or in the atmosphere.  相似文献   

13.
脱乙酰壳多糖抑制真菌生长的构效关系   总被引:1,自引:0,他引:1  
本研究目标是研究脱乙酰壳多糖的化学结构(乙酰化程度DA和聚合程度DP)与它的抑制真菌生长能力之间的构效关系. 选用了12个分属于3个系列、化学结构相关而又不同的、结构清晰的脱乙酰壳多糖和3种不同的真菌(Fusarium solani, Fusarium graminearumUstilago maydis). 通过分别测定每个脱乙酰壳多糖对3种真菌的生长曲线和最低抑制浓度(MIC, minimum inhibitory concentration); 比较各个系列脱乙酰壳多糖的MIC和它的化学结构(DA和DP)之间的关系. 结果显示对同一种真菌, 不同脱乙酰壳多糖的抑制真菌生长曲线形态和MIC是各不相同的; 同样同一脱乙酰壳多糖, 对不同真菌也有其特殊的生长曲线和MIC; 通常随着脱乙酰壳多糖中DA的递增, MIC是增加的, 其抑制真菌的活性是降低的; 在DA相同的条件下, 随着DP的递增, MIC也是增加的, 其抑制真菌的活性是减低的. 所以可以说, 脱乙酰壳多糖抑制真菌生长的能力与其化学结构紧密相关, 在本实验的条件下, 脱乙酰壳多糖分子越小, 分子中的自由氨基越多, 抑制真菌的活性越大.  相似文献   

14.
壳聚糖的γ射线辐射降解研究   总被引:26,自引:0,他引:26  
动力学;无规降解;断链机理;壳聚糖的γ射线辐射降解研究  相似文献   

15.
Measurements have been made of optical field-induced ionization and fragmentation of methane molecules at laser intensities in the 10(16) W cm(-2) range using near transform limited pulses of 100 fs duration as well as with chirped pulses whose temporal profiles extend up to 1500 fs. Data is taken both in constant-intensity and constant-energy modes. The temporal profile of the chirped laser pulse is found to affect the morphology of the fragmentation pattern that is measured. Besides, the sign of the chirp also affects the yield of fragments like C2+, H+, and H2+ that originate from methane dications that are formed by optical field-induced double ionization.  相似文献   

16.
In alkane solvents, poly(isoprene-b-ferrocenyldimethylsilane) (PI-b-PFS) block copolymer forms fiberlike micelles, which show intriguing similarities with biological fibers such as amyloid fibers. Both systems exhibit fiber growth by a nucleated self-assembly mechanism and rapidly fragment upon exposure to the shear forces of ultrasonic irradiation. Sonication of PI-b-PFS cylindrical micelles was studied quantitatively by static light scattering and by electron microscopy. Both techniques are in excellent agreement and show that the weight-average length of sonicated micelles decreases as a function of sonication time. Simulation of the cleavage of micelles using different scission models shows that micelle fragmentation follows a Gaussian model and that the scission is highly dependent on micelle length, in contrast to DNA and polymer chain scission. We speculate that biological fibers, which are similar in length and rigidity to PFS block copolymer micelles, fragment by a similar mechanism when subjected to sonication.  相似文献   

17.
The fragmentation dynamics of C60 irradiated with intense femtosecond laser pulses is studied with one-color pump-probe spectroscopy. Small neutral fragments (C, C2, and C3) are formed by an 800-nm pump pulse which are then postionized by a delayed probe pulse. The respective ion signals detected by the time-of-flight mass spectrometry dramatically increase on a time scale of 10-20 ps.  相似文献   

18.
In the first part of this study fragmentation patterns from a range of dextran oligomers (containing 4-20 anhydroglucose units) were compared in three different methods of analysis coupled with matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry. Collision-induced-dissociation (CID), prompt in-source decay (ISD) and post-source decay (PSD) all caused cleavage of the glycosidic bonds. Both CID and to a lesser extent ISD caused further cleavage of pyranose rings of the individual sugar residues. There was very little cleavage of pyranose rings detected in the PSD spectrum. Derivatisation of the reducing end-groups of the oligodextrans with 1-phenyl-3-methyl-5-pyrazolone (PMP) restricted cleavage in the MALDI mass spectrometer to the non-reducing end, and further it enabled the saccharides to be separated by HPLC so that a single chain length could be examined as a standard. Maltoheptaose was also used as a standard. In the second part of the study prompt ISD-MALDI mass spectrometry was used to compare the fragmentation of three oligoglucans, dextran, maltodextrin and gamma cyclodextrin, that have different linkages and different secondary structure. The results showed that the degree of fragmentation correlated with the degree of freedom in the saccharide chains in solution determined by NMR. Dextran the most random conformation was fragmented most whereas there was little evidence of any fragments, not even glycosidic bond breakage from cyclodextrin, even when the laser power was increased considerably. The fragmentation pattern of maltodextrin was intermediate. The patterns of fragmentation produced by MALDI mass spectrometry, particularly where standards are available to calibrate the spectrum and the energy of the laser is controlled, can be used to predict the type of linkage present.  相似文献   

19.
For a single, intense 7 μm linearly polarized laser pulse, we found that the branching ratio for the fragmentation of ClCHO+ → Cl + HCO+, H + ClCO+, HCl++CO depended strongly on the orientation of the molecule (J. Phys. Chem. Lett. 2012 , 3 2541). The present study explores the possibility of controlling the branching ratio for fragmentation by using two independent pulses with different frequencies, alignment and delay. Born-Oppenheimer molecular dynamics simulations in the laser field were carried out with the B3LYP/6-311G(d,p) level of theory using combinations of 3.5, 7 and 10.5 μm sine squared pulses with field strengths of 0.03 au (peak intensity of 3.15×1013 W/cm2) and lengths of 560 fs. A 3.5 μm pulse aligned with the C-H bond and a 10.5 μm pulse perpendicular to the C-H bond produced a larger branching ratio for HCl++CO than a comparable single 7 μm pulse. When the 10.5 μm pulse was delayed by one quarter of the pulse envelope, the branching ratio for the high energy product, (HCl++CO 73%) was a factor of three larger than the low energy product (Cl + HCO+, 25%). By contrast, when the 3.5 μm pulse was delayed by one quarter of the pulse envelope, the branching ratio was reversed (HCl++CO 38%; Cl + HCO+, 60%). Continuous wavelet analysis was used to follow the interaction of the laser with the various vibrational modes as a function of time. © 2018 Wiley Periodicals, Inc.  相似文献   

20.
An all-fiber-coupled laser-induced breakdown spectroscopy (LIBS) sensor device is developed. A passively Q-switched Cr4+Nd3+:YAG microchip laser is amplified within an Yb fiber amplifier, thus generating high power laser pulses (pulse energy Ep = 0.8 mJ, wavelength λ = 1064 nm, repetition rate frep. = 5 kHz, pulse duration tp = 1.2 ns). A passive (LMA) optical fiber is spliced to the active fiber of an Yb fiber amplifier for direct guiding of high power laser pulses to the sensor tip. In front of the sensor a plasma is generated on the surface to be analyzed. The plasma emission is collected by a set of optical fibers also integrated into the sensor tip. The spectrally resolved LIBS spectra are processed by application of principal component analysis (PCA) and analyzed together with the time-resolved spectra with neural networks. Such procedure allows accurate analysis of samples by LIBS even for materials with similar atomic composition. The system has been tested successfully during field measurements at the German Armed Forces test facility at Oberjettenberg.

The LIBS sensor is not restricted to anti-personnel mine detection but has also the potential to be suitable for analysis of bulk explosives and surface contaminations with explosives, e.g. for the detection of improvised explosive devices (IEDs).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号