首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stable two-mode, and three-mode oscillations due to the spatial hole burning effect were observed experimentally with the increase of the pump power ratio in a laser-diode pumped sub-nanosecond microchip Cr,Yb:YAG self-Q-switched multimode laser. The stability of the output pulse trains was attributed to the mode coupling through antiphase dynamics between different modes. Modified multimode rate equations including the spatial hole-burning effect in the active medium and the non-linear absorption of the saturable absorber were proposed. Numerical simulations of the antiphase dynamics of such a laser were in good agreement with the experimental data, and the antiphase dynamics were explained by the evolution of the inversion population and the bleaching and recovery of the inversion population of the saturable absorber.  相似文献   

2.
Competition among modes in an annular CO2 laser has been experimentally and numerically analyzed. During the coexistence of different patterns, each of them resulting from the interaction of two transverse modes with opposite angular momentum, chaos has been experimentally detected. A numerical model, derived from the Maxwell-Bloch equations and including symmetry breaking terms, enables the interpretation of the main experimental features. Received 10 March 2000  相似文献   

3.
The formation and stabilization of spatio-temporal patterns in an annular CO2 laser is studied. We give experimental and numerical evidence of the role of a small spatial perturbation (consisting of a thin metallic wire inserted in the optical cavity) in the selection and stabilization of patterns. Received 15 December 1999  相似文献   

4.
5.
We consider the rate equations for a laser with an intracavity saturable absorber and subject to a periodically modulated pump. By deriving simplified equations for a map valid for strongly pulsating regimes, analytical conditions are determined that specify the properties of both frequency-locked and unlocked behaviors. As the strength of the modulation is increased, quasiperiodic and period-doubling bifurcations are predicted. However, only the transition from locking to non-locking through a quasiperiodic bifurcation is possible for realistic values of the parameters. Our results are consistent with previous numerical and experimental studies of modulated lasers with a saturable absorber. Received 10 March 2001  相似文献   

6.
We compare three different switching techniques for the control of cavity solitons in a VCSEL-based cavity soliton laser, one incoherent and the other two semicoherent with different injection frequencies. We show that the switching dynamics and energies can be very different depending on the type of injection.  相似文献   

7.
Combination of two basic types of synchronization, anticipatory synchronization and lagged synchronization, is investigated numerically between two coupled semiconductor lasers. It is found that lagged synchronization produced by a backward coupling with a suitable delay can combine with the originally hidden anticipatory synchronization and produce a type of synchronization overcoming the original lagged synchronization produced by a forward coupling. We study the combination synchronization phenomenon when the delay of the backward coupling is different from that of the original anticipatory synchronization. Our results suggest that the synchronization combination phenomenon might allow an interpretation of an experimental observation by Sivaprakasam et al. [Phys. Rev. Lett. 87, 154101 (2001)] that the anticipating time is irrespective of the external-cavity round trip time, which to date remains to be understood.  相似文献   

8.
Phase locking and chaotic synchronization in an array of three lasers   总被引:4,自引:0,他引:4  
A linear array of three lasers that are coupled mutually in space is investigated. It is shown that the phase of the laser fields is locked with intermediate coupling while the laser intensities are totally chaotic and chaotically synchronized. When the intensities of lasers reenter the regime of chaotic synchronization at smaller coupling constant, the laser fields show low degree of phase locking. The phase differences in the fields between three lasers show rich patterns when the coupling is changed. Received 3 August 2001 and Received in final form 27 September 2001  相似文献   

9.
The large scale interferometric gravitational wave detectors consist of Fabry-Perot cavities operating at very high powers ranging from tens of kW to MW for next generations. The high powers may result in several nonlinear effects which would affect the performance of the detector. In this paper, we investigate the effects of radiation pressure, which tend to displace the mirrors from their resonant position resulting in the detuning of the cavity. We observe a remarkable effect, namely, that the freely hanging mirrors gain energy continuously and swing with increasing amplitude. It is found that the “time delay”, that is, the time taken for the field to adjust to its instantaneous equilibrium value, when the mirrors are in motion, is responsible for this effect. This effect is likely to be important in the optimal operation of the full-scale interferometers such as VIRGO and LIGO. Received 12 July 1999  相似文献   

10.
The global integro-differential rate equations describing a multimode laser are analyzed. Expressions for the relaxation oscillation frequencies and their damping rates in the single-mode and two-mode regimes are obtained without specifying either the cavity geometry or the longitudinal pump profile. On the same level of generality, we prove the existence of universal relations relating the peaks of the power spectra in the two-mode regime. For a Fabry-Perot with arbitrary longitudinal pump profile, series expansions of all the physical functions are derived in powers of the pump moments. These moments are averages of the pump profile over cavity modes at linear combinations of the lasing frequencies and their harmonics. These results apply to end-pumped and/or partially filled lasers. For a single mode Fabry-Perot laser, we prove that the contribution to the steady state intensity from the lasing mode varies from 75% close to the lasing threshold to zero at high intensity. The remainder comes from the harmonics of the lasing mode. Analyzing the steady state single mode intensity equation in terms of the pump gratings, we prove that close to the lasing threshold only the space average of the pump and its grating oscillating at twice the lasing wave number do not vanish. This provides a hint towards the justification of the usual modal rate equations which retain only these two functions in the dynamical evolution of a laser. For a Fabry-Perot with constant pump profile, an exact expression for the upper boundary of the stable single mode regime is derived. In that two-mode regime, we prove that there is a critical value of the pump at which the ratio of the two relaxation oscillation frequencies is 2, leading to an internal resonance.  相似文献   

11.
This work presents experimental results concerning a passively Q-switching Nd:LuVO4 laser with a Cr4+:YAG saturable absorber operated in a three-element cavity. When the pump power exceeded 5.47 W, the system transfers stable pulse train into spatial-temporal instability. Furthermore, the chaotic pulse train accompanied the generation of a satellite pulse. The experimental results reveal that the mechanisms of instability and generation of the satellite pulse are governed by the multitransverse mode competition.  相似文献   

12.
We study theoretically and experimentally different methods to control the pulses emitted by solid-state lasers passively Q-switched by a saturable absorber. We explore one- and two-axis laser schemes allowing to control the pulse duration, which is ruled by the saturation powers of the transitions in the absorber and in the gain medium. In one-axis lasers, it is shown that the adjustment of the pump and laser beam sizes in the active medium and in the absorber provides an efficient means to control the pulse temporal shape and duration. Furthermore, a two-axis laser cavity supporting so-called forked-eigenstate operation permits to freely adjust the parts of the mode power which circulate in the gain medium and in the absorber. In this case, a lengthening of the pulse duration up to 500 ns is obtained with an increase of the average output power. The theoretical results obtained by using rate equations adapted to each cavity geometry are in close agreement with experiments performed on a diode-pumped Nd3+:YAG laser Q-switched by a Cr4+:YAG saturable absorber. The relevance of the different techniques to control the pulse durations in the framework of potential applications is discussed. Received 3 December 2001  相似文献   

13.
We study theoretically the dynamical reorientation phenomena when a long-pitch cholesteric liquid-crystal film with homeotropic alignment is illuminated by a circularly polarized lightwave. In the present case, the natural cholesteric pitch is of the order of (or larger than) the film thickness. The helical cholesteric structure is thus frustrated by the boundary conditions without illumination. However, above a light intensity threshold reorientation occurs and the bifurcation scenario depends strongly on the natural cholesteric pitch. Recalling that a long-pitch cholesteric is achieved in practice by adding a small amount of chiral agents in a nematic liquid crystal, the observed dynamics can be viewed as the result of the competition between intrinsic and extrinsic unidimensional helical patterns. The intrinsic part consists of the helical deformations induced by the chirality of the dopant, whereas the extrinsic part is related to the chirality induced by the optical field through the non-uniform angular momentum transfer of light to a nematic. The all-optical analog in the case of a pure nematic (without chiral dopant), is also discussed.  相似文献   

14.
A time-independent theoretical and numerical analysis of an optical bistable model of two-level atoms in a ring cavity, driven by a coherent field and in contact with a squeezed vacuum field is presented in the two cases of absorptive and dispersive optical bistability (OB). In the former case, a suitable choice of the phase of the squeezed vacuum field reduces the threshold for OB to occur compared with the normal vacuum case. In the latter case, regions of OB are identified as one or two disconnected simple closed curves depending on the cooperation parameter [0pt] : is the maximum possible value of the critical value of C at fixed values of the squeezed vacuum field parameters. Phase switching effects between different (output) states of the system is investigated in detail. In the absorptive case, one- or two-way optical switching is possible depending on [0pt] . We also present results which demonstrate more complicated switching behaviour in the dispersive case. Received 12 March 1999 and Received in final form 20 August 1999  相似文献   

15.
Theoretical investigations of dynamical behavior in optical parametric oscillators (OPO) have generally assumed that the cavity detunings of the interacting fields are controllable parameters. However, OPOs are known to experience mode hops, where the system jumps to the mode of lowest cavity detuning. We note that this phenomenon significantly limits the range of accessible detunings and thus may prevent instabilities predicted to occur above a minimum detuning from being evidenced experimentally. As a simple example among a number of instability mechanisms possibly affected by this limitation, we discuss the Hopf bifurcation leading to periodic behavior in the monomode mean-field model of a triply resonant OPO and show that it probably can be observed only in very specific setups.  相似文献   

16.
We show theoretically that thermomechanical effects in dye-doped nematic liquid crystals when illuminated by laser beams, can become important and lead to molecular reorientation at intensities substantially lower than that needed for optical Fréedericksz transition. We propose a 1D model that assumes homogenous intensity distribution in the plane of the layer and is capable to describe such a thermally induced threshold lowering. We consider a particular geometry, with a linearly polarized light incident perpendicularly on a layer of homeotropically aligned dye-doped nematics.  相似文献   

17.
We analyze the quantum fluctuations of the degenerate optical parametric oscillator close to an instability for the formation of a square pattern. While strong correlations between the fluctuations of the signal modes emitted at the critical wave number and with opposite wave vector are present both below and above threshold, no features signaling the square character of the pattern forming above threshold have been identified below threshold in the spatio-temporal second-order coherence. We also explore in which regimes a reduced few mode model gives meaningful results. Received 17 September 2002 / Received in final form 11 November 2002 Published online 26 February 2003  相似文献   

18.
19.
Modulation instability with subsideband generation induced by periodic power variation in soliton fiber ring lasers is reported. We found that different wavelength shifts of subsideband generation are related to different periodic power variation. The period of power variation and wavelength shifts of subsideband can be changed by altering the linear cavity phase delay. It is also found that the periodic power variation is caused by the interaction between the nonuniform polarization state of the circulating light and the polarizer in the laser cavity.  相似文献   

20.
We present an experimental study of nonlinear lensing of near-resonant light by a cloud of laser-cooled rubidium atoms, specifically aimed at understanding the role of the interaction time between the light and the atomic vapor. We identify four different nonlinear mechanisms, each associated with a different time constant: electronic nonlinearity, Zeeman optical pumping, hyperfine optical pumping and radiation pressure. Our observations can be quite accurately reproduced using a simple rate equation model which allows for a straightforward discussion of the various effects. The results are important for planning more refined experiments on transverse nonlinear optics and self-organization in samples of cold atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号