首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ZnS and SiO2-ZnS nanophosphors, with or without different concentration of Mn2+ activator ions, were synthesized by using a sol-gel method. Dried gels were annealed at 600 °C for 2 h. Structure, morphology and particle sizes of the samples were determined by using X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The diffraction peaks associated with the zincblende and the wurtzite structures of ZnS were detected from as prepared ZnS powders and additional diffraction peaks associated with ZnO were detected from the annealed powders. The particle sizes of the ZnS powders were shown to increase from 3 to 50 nm when the powders were annealed at 600 °C. An UV-Vis spectrophotometer and a 325 nm He-Cd laser were used to investigate luminescent properties of the samples in air at room temperature. The bandgap of ZnS nanoparticles estimated from the UV-Vis data was 4.1 eV. Enhanced orange photoluminescence (PL) associated with 4T16A1 transitions of Mn2+ was observed from as prepared ZnS:Mn2+and SiO2-ZnS:Mn2+ powders at 600 nm when the concentration of Mn2+ was varied from 2-20 mol%. This emission was suppressed when the powders were annealed at 600 °C resulting in two emission peaks at 450 and 560 nm, which can be ascribed to defects emission in SiO2 and ZnO respectively. The mechanism of light emission from Mn2+, the effect of varying the concentration on the PL intensity, and the effect of annealing are discussed.  相似文献   

2.
Microphotoluminescence mapping measurements were performed in a magnetic field on a (Cd,Mn)Te quantum well, modulation n-doped with iodine at about 1010 cm−2. Photoluminescence spectra contain neutral (X0) and negatively charged (X) exciton lines. The Zeeman effect shows a significant role of heating of the Mn system even under lowest excitation densities. The effective temperature of the magnetic system exhibits strong fluctuations anticorrelated with the total intensity of PL signal. An interpretation of these fluctuations in terms of the influence of non-radiative recombination centers is proposed (in two alternative versions). Maps of the local X0/X intensity ratio indicate a minor role of electrostatic potential fluctuations.  相似文献   

3.
The photoluminescence (PL) of Cr-doped ZnSe single crystals is investigated in a temperature interval from 83 up to 297 K and in a wavelengths region from 440 up to 2700 nm. The doping was carried out during a high-temperature annealing of ZnSe crystals in CrSe vapors and in chrome chlorides medium. It is revealed that the doping results in an appearance of both luminescence bands located at 0.54, 0.97, and 2.15 μm and edge luminescence bands located at 454, 457, and 460 nm at 83 K. It is shown that the PL bands located at 457 and 460 nm are caused by the radiative recombination with the participation of holes located on hydrogen-like orbits close to Cr+ centers, having a binding energy of 99 meV. The excitons bound with centers responsible for the radiation located at 0.54 μm and having a binding energy of 65-68 meV are considered. The energy of a lattice relaxation at recharge of centers responsible for green radiation is estimated and equals 40-170 meV.  相似文献   

4.
In this paper, we observed that in Er3+/Yb3+ codoped nanocrystals (NC), with the decreasing particle size and the increasing Yb3+ concentration, the upconversion luminescence (UCL) of the red emissions of gradually increased, while the green emissions of gradually diminished under 980 nm diode laser excitation. In NC with lower Yb3+ concentration, both the red and green emissions result from a two-photon excitation. In NC with higher Yb3+ concentration, the red emissions result from a two-photon excitation, while the green emissions dominantly result from a three-photon excitation. A model was provided for explaining the above UCL phenomena.  相似文献   

5.
K. Hyomi 《Journal of luminescence》2009,129(12):1715-1717
We present a micro-photoluminescence (m-PL) study of electron-spin injection under magnetic fields in self-assembled semiconductor quantum dots (QDs) of CdSe. A characteristic band line-up of the CdSe QDs coupled with a diluted magnetic semiconductor quantum well (DMS-QW) of ZnCdMnSe through a ZnSe barrier layer enabled us to inject the electron spins from the DMS-QW into QDs. An experimental evidence of the electron-spin injection was provided by observations of circularly polarized m-PL spectra from individual QDs in this coupled QD structure. We find anti-correlation of PL intensity in between the DMS-QW (spin injector) and the individual QDs (spin receiver).  相似文献   

6.
Photoluminescence (PL) spectra of ZnSe single crystals annealed in different ambients containing molecular nitrogen are investigated. The compensating activity of N impurity in n-ZnSe crystals is shown. It is caused by the formation of NSe acceptor centers, having 101-108 meV activation energy. The intensity of amplification of both long-wave luminescence spectra bands and the edge luminescence spectra bands caused by the presence of nitrogen in annealing medium is investigated. The presented results allow one to assign the long-wave luminescence to deep acceptors caused by uncontrollable impurities, and the relevant bands of the edge luminescence spectra to the excitons bound with the same deep acceptors. The model explaining the transformations of the luminescent properties of ZnSe crystals by means of nitrogen impurity doping is proposed. The model considers the presence of donors having 75 meV activation energy, acceptors having 220-720 meV activation energy and centers having levels localized near the middle of the band gap.  相似文献   

7.
We have grown nitrogen-doped ZnO (ZnO:N) films by laser molecular-beam epitaxy. The use of lattice-matched ScAlMgO4 substrates prevented the degradation of crystallinity induced by the nitrogen incorporation to the films. Despite this improvement, we have not obtained ZnO:N films which showed p-type conductivity. We studied the optical properties of these ZnO:N films. Donor-acceptor pair (DAP) luminescence was observed. The results indicate the formation of an acceptor state. The energy position of the DAP luminescence is lower than that reported by Look et al. [Appl. Phys. Lett. 81 (2002) 1830]. The DAP luminescence band shifts to lower energy with increasing nitrogen concentration. A photoluminescence recombination possibly due to the free-electron-to-acceptor (FA) transition was observed at temperatures higher than 40 K. The acceptor ionization energy was estimated from the energy position of the FA luminescence to be 266 meV.  相似文献   

8.
Preparation and characterization of CdS/Si coaxial nanowires   总被引:1,自引:0,他引:1  
CdS/Si coaxial nanowires were fabricated via a simple one-step thermal evaporation of CdS powder in mass scale. Their crystallinities, general morphologies and detailed microstructures were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope and Raman spectra. The CdS core crystallizes in a hexagonal wurtzite structure with lattice constants of a=0.4140 nm and c=0.6719 nm, and the Si shell is amorphous. Five Raman peaks from the CdS core were observed. They are 1LO at 305 cm−1, 2LO at 601 cm−1, A1-TO at 212 cm−1, E1-TO at 234 cm−1, and E2 at 252 cm−1. Photoluminescence measurements show that the nanowires have two emission bands around 510 and 590 nm, which originate from the intrinsic transitions of CdS cores and the amorphous Si shells, respectively.  相似文献   

9.
In CdTe doped with vanadium the photoluminescence due to the 3 T 2(F) 3 A 2(F) transition of V3+(d 2) is detected. Its decay time is determined as (630±20) s, a result comparable to the analogous emissions in various host lattices. Further emissions around 5000 cm–1 and 9000 cm–1 are caused by charge-transfer transitions or bound-exciton decay. Excitation and sensitization spectra yield information on the positions of the energy levels within the gap, which are discussed using two different models. At T=4.2 K, the distance of the V2+/V3+ donor level is 7300 cm–1 and 5700 cm–1 referred to the valence and the conduction band edges, respectively. The absence of V2+(d 3) centres is tentatively ascribed to the existence of deeply bound excitons.  相似文献   

10.
ZnO nanowires were grown on AlN thin film deposited on the glass substrates using a physical vapor deposition method in a conventional tube furnace without introducing any catalysts. The temperature of the substrates was maintained between 500 and 600 °C during the growth process. The typical average diameters of the obtained nanowires on substrate at 600 and 500 °C were about 57 and 22 nm respectively with several micrometers in length. X-ray diffraction and Auger spectroscopy results showed Al diffused from AlN thin film into the ZnO nanowires for the sample grown at 600 °C. Photoluminescence of the nanowires exhibits appearance of two emission bands, one related to ultraviolet emission with a strong peak at 380-382 nm, and the other related to deep level emission with a weak peak at 503-505 nm. The ultraviolet peak of the nanowires grown at 500 °C was blue shifted by 2 nm compared to those grown at 600 °C. This shift could be attributed to surface effect.  相似文献   

11.
We have investigated temporal behavior of the photoluminescence (PL) spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532 nm laser radiation and gamma-rays. Under ∼100 W/cm2 laser radiation, the PL intensity (IPL) increases with irradiation time upto about 500 s and thereafter declines linearly. The wavelength of the PL emission (λpeak) exhibits a blue-shift with exposure time. Upon simultaneous irradiation by 100 W/cm2 532-nm laser, as well as 0.57 and 1.06 MeV gamma-rays, the temporal behaviors of both IPL and λpeak are significantly different; IPL increases to a saturation level, and the magnitude of the blue-shift in λpeak is reduced. We discuss possible mechanisms underlying these results.  相似文献   

12.
The theoretical study of fluorescence rate of a single molecule close to a spherical metallic nanoparticle is presented. The dielectric function of the metallic nanoparticle and its polarizability is analyzed when the radii of the nanoparticle is rather small. Based on dipole–dipole model, the distance dependence of the excitation rate, radiation rate, nonradiation rate and quantum yield of the emitter molecule are derived out. The results show that the quantum yield is rather small at the vicinity of the metallic nanoparticle surface.  相似文献   

13.
ZnS films are deposited by pulsed laser deposition on porous silicon (PS) substrates formed by electrochemical anodization of p-type (100) silicon wafer. Scanning electron microscope images reveal that the surface of ZnS films is unsmoothed, and there are some cracks in the ZnS films due to the roughness of the PS surface. The x-ray diffraction patterns show that the ZnS films on PS surface are grown in preferring orientation along cubic phase β-ZnS (111) direction. White light emission is obtained by combining the blue-green emission from ZnS films with the orange-red emission from PS layers. Based on the I-V characteristic, the ZnS/PS heterojunction exhibits the rectifying junction behaviour, and an ideality factor n is calculated to be 77 from the I-V plot.  相似文献   

14.
We performed photoluminescence experiments on colloidal, Co2+-doped ZnO nanocrystals in order to study the electronic properties of Co2+ in a ZnO host. Room temperature measurements showed, next to the ZnO exciton and trap emission, an additional emission related to the Co2+ dopant. The spectral position and width of this emission does not depend on particle size or Co2+ concentration. At 8 K, a series of ZnO bulk phonon replicas appear on the Co2+-emission band. We conclude that Co2+ ions are strongly localized in the ZnO host, making the formation of a Co2+d-band unlikely. Magnetic measurements revealed a paramagnetic behaviour.  相似文献   

15.
The effect of the annealing atmosphere on the luminescent efficiency of ZnTe:O phosphors for X-ray imaging applications was studied. The phosphors were doped by ball-milling bulk ZnTe crystals in an O2 atmosphere and annealed in various atmospheres: vacuum, N2 or forming gas (95%N2/5%H2). All samples exhibited a deep red emission centered at 680 nm.The samples annealed in forming gas atmosphere exhibited an X-ray luminescent efficiency five times higher than the samples annealed in vacuum or N2 atmospheres, which was attributed to the removal of surface tellurium oxides.  相似文献   

16.
Stoichiometric and titanium-excess nanocrystalline barium titanates were synthesized using a hydrothermal process at various hydrothermal temperatures and with further heat treatment at 500 °C and 900 °C. Owing to the different process conditions, the excess titanium exists in different states and configurations within the nanocrystalline BaTiO3 matrix; this was demonstrated by X-ray diffraction, Raman scattering, and photoluminescence. In these nanocrystalline BaTiO3, the 590, 571, 543 and 694 nm light emission bands were observed; mechanisms leading to such emissions were also discussed. Received: 23 February 2001 / Accepted: 10 May 2001 / Published online: 27 June 2001  相似文献   

17.
The role of organic amines in the colloidal synthesis of CdSe quantum dots (QDs) has been studied. CdSe QDs were synthesized from the source solutions containing 5 vol% of amines having various alkyl chain lengths, stereochemical sizes and electron donation abilities. The role of the additional amines was evaluated on the basis of the photoluminescence (PL) properties such as PL wavelength and intensity of the obtained CdSe QDs. The observed PL spectra were explained by the fact that the amines behaved as capping ligands on the surface of the QDs in the product colloidal solution and complex ligands for cadmium in the source solutions. It was shown that the particle size was controlled by the diffusion process depending on the mass and stereochemical shape of the amines, and the luminescence intensity increased with the increasing electron donation ability and capping density of the amines.  相似文献   

18.
The luminescence properties of zinc oxide (ZnO) nanocrystals grown from solution are reported. The ZnO nanocrystals were characterized by scanning electron microscopy, X-ray diffraction, cathodo- and photoluminescence (PL) spectroscopy. The ZnO nanocrystals have the same regular cone form with the average sizes of 100-500 nm. Apart from the near-band-edge emission around 381 nm and a weak yellow-orange band around 560-580 nm at 300 K, the PL spectra of the as-prepared ZnO nanocrystals under high-power laser excitation also showed a strong defect-induced violet emission peak in the range of 400 nm. The violet band intensity exhibits superlinear excitation power dependence while the UV emission intensity is saturated at high excitation laser power. With temperature raising the violet peak redshifts and its intensity increases displaying unconventional negative thermal quenching behavior, whereas intensity of the UV and yellow-orange bands decreases. The origin of the observed emission bands is discussed.  相似文献   

19.
Photoluminescence and absorption in sol-gel-derived ZnO films   总被引:1,自引:0,他引:1  
Highly c-axis-oriented ZnO films were obtained on corning glass substrate by sol-gel technique. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption in the absorption (UV) spectra are closely related to the post-annealing treatment. The difference between PL peak position and the absorption edge, designated as Stokes shift, is found to decrease with the increase of annealing temperature. The minimum Stokes shift is about 150 meV. The decrease of Stokes shift is attributed to the decrease in carrier concentration in ZnO film with annealing. X-ray diffraction, surface morphology and refractive index results indicate an improvement in crystalline quality with annealing. Annealed films also exhibit a green emission centered at ∼520 nm with activation energy of 0.89 eV. The green emission is attributed to the electron transition from the bottom of the conduction band to the antisite oxygen OZn defect levels.  相似文献   

20.
Luminescent Ca1−xF2+x:Eux nanoparticles were synthesized by a chemical co-precipitation method in an ethanol solution. The Ca1−xF2+x:Eux nanoparticles exhibit a sphere-like morphology with particle diameter of about 15-20 nm. With increasing concentration of Eu3+ ion the intensity of XRD diffraction peaks decreased significantly and full width at half-maximum of the peaks increased gradually, which indicated that more Eu3+ ions resulted in the increase of structural defects. The emission spectrum of Ca1−xF2+x:Eux nanoparticles consisted of a few narrow, sharp lines corresponding to Eu3+ ions. The luminescence intensity of Ca1−xF2+x:Eux nanoparticles increased with increasing concentration of Eu3+ ion and reached a maximum at approximately 15 mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号