首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article reports a systematic study of the seed‐mediated growth of Au@Pd core–shell nanocrystals with a variety of controlled sizes and morphologies. The key to the success of this synthesis is to manipulate the reaction kinetics by tuning a set of reaction parameters, including the type and concentration of capping agent, the amount of ascorbic acid used as the reducing agent, and the injection rate used for the precursor solution. Starting from Au nanospheres of 11 nm in diameter as the seeds, Au@Pd core–shell nanocrystals with a number of morphologies, including octahedra, concave octahedra, rectangular bars, cubes, concave cubes, and dendrites, could all be obtained by simply altering the reaction rate. For the first time, it was possible to generate Au@Pd nanocrystals with concave structures on the surfaces while their sizes were kept below 20 nm. In addition, the as‐prepared Au@Pd nanocubes can be used as seeds to generate Au@Pd@Au and Au@Pd@Au@Pd nanocrystals with multishelled structures.  相似文献   

2.
By using octahedral gold nanocrystals with sizes of approximately 50 nm as the structure-directing cores for the overgrowth of Pd shells, Au-Pd core-shell heterostructures with systematic shape evolution can be directly synthesized. Core-shell octahedra, truncated octahedra, cuboctahedra, truncated cubes, and concave cubes were produced by progressively decreasing the amount of the gold nanocrystal solution introduced into the reaction mixture containing cetyltrimethylammonium bromide (CTAB), H(2)PdCl(4), and ascorbic acid. The core-shell structure and composition of these nanocrystals has been confirmed. Only the concave cubes are bounded by a variety of high-index facets. This may be a manifestation of the release of lattice strain with their thick shells at the corners. Formation of the [CTA](2)[PdBr(4)] complex species has been identified spectroscopically. Time-dependent UV-vis absorption spectra showed faster Pd source consumption rates in the growth of truncated cubes and concave cubes, while a much slower reduction rate was observed in the generation of octahedra. The concave cubes and octahedra were used as catalysts for a Suzuki coupling reaction. They can all serve as effective and recyclable catalysts, but the concave cubes gave higher product yields with a shorter reaction time attributed to their high-index surface facets. The concave cubes can also catalyze a wide range of Suzuki coupling reactions using aryl iodides and arylboronic acids with electron-donating and -withdrawing substituents.  相似文献   

3.
In this study, we have developed for the first time a fast and energy‐efficient method for the synthesis of PbS nanocrystals with systematic shape evolution from cubic to truncated cubic, cuboctahedral, truncated octahedral, and octahedral structures. The method involves the addition of a small volume of preheated lead acetate and thioacetamide (TAA) mixture to an aqueous growth solution of lead acetate, thioacetamide, cetyltrimethylammonium bromide, and nitric acid. By varying the amount of thioacetamide added to the growth solution, PbS nanocrystals with different morphologies were generated in 2 h at 90 °C. Slight experimental modifications were adopted to generate truncated octahedra. The nanocrystals have very uniform dimensions with average sizes of 32–47 nm. Their structures have been extensively examined by electron microscopy. Nanocube sizes can also be tuned within a range. UV/Vis absorption spectra of PbS cubes, cuboctahedra, and octahedra all show decreasing but continuous absorption from 300 nm to beyond 1000 nm. By monitoring the speed of darkening of solution color, particle growth rate was found to be fastest for nanocubes, followed by truncated cubes, cuboctahedra, and octahedra. These monodisperse nanocrystals can readily form self‐assembled structures. Truncated cubes and octahedra that form monolayer and multilayer packing arrangements have also been studied. This green approach to the synthesis of PbS nanocrystals with fine size and shape control should allow for investigations of their facet‐dependent properties and the fabrication of novel heterostructures.  相似文献   

4.
Surface capping has been shown to play a pivotal role in controlling the evolution of metal nanocrystals into different shapes or morphologies. With the synthesis of Au@Pd concave nanocubes as an example, here we demonstrate that the capping agent can also impact the reduction kinetics of a precursor, and thereby its reduction pathway, for the formation of metal nanocrystals with distinct morphologies. A typical synthesis involves the reduction of a PdII precursor by ascorbic acid at room temperature in the presence of Au nanospheres as seeds, together with the use of hexadecyltrimethylammonium chloride (CTAC) or hexadecyltrimethylammonium bromide (CTAB) as the capping agent. In the case of CTAC, the PdII precursor prevails as PdCl42−, leading to the formation of Au@Pd concave nanocubes with a rough surface because of the fast reduction kinetics and thus the dominance of solution reduction pathway. When switched to CTAB, the PdII precursor changes to PdBr42− that features slow reduction kinetics and surface reduction pathway. Accordingly, the Au@Pd concave nanocubes take a smooth surface. This work demonstrates that both reduction kinetics and surface capping play important roles in controlling the morphology of metal nanocrystals and these two roles are often coupled to each other.  相似文献   

5.
本文简要综述了以单晶银纳米方块做为可控外延生长的品种来合成各种银纳米晶的相关工作.通过改变银前驱体和晶种颗粒的比例、表面包裹分子及其用量、还原剂浓度、添加欠电位金属阳离子等手段,我们成功地控制了银纳米晶的外延生长方向和裸露晶面,并合成出一系列尺寸、形貌可控的银纳米晶,包括立方体、立方八面体、八面体、八足体、二十四面体、凹面立方八面体和凹面八面体等.除了对合成方法和过程的介绍,本文还简要讨论了每种纳米结构的形成机制.  相似文献   

6.
We report the shape and size control of polyhedral gold nanocrystals by a modified polyol process. The rapid reduction of gold precursors in refluxing 1,5-pentanediol has successfully provided a series of gold nanocrystals in the shape of octahedra, truncated octahedra, cuboctahedra, cubes, and higher polygons by incremental changes of silver nitrate concentration. All nanocrystals were obtained quantitatively and were uniform in shape and size in the range of approximately 100 nm. Smaller octahedra and cubes were also prepared by using large amounts of PVP. Silver species generated from AgNO3 seemed to determine the final nanocrystal morphology by the selective growth of {111} and/or the restriction of {100}. The shape evolution of the particles was addressed by quenching the reactions at different time intervals. The approximately 60 nm seeds were generated rapidly and grown slowly with simultaneous edge sharpening. Aging the reaction mixture focused the size and shape of the nanocrystals by Ostwald ripening. We believe that our selective growth conditions can be applied to other shapes and compositions of face-centered cubic metals.  相似文献   

7.
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   

8.
《中国化学快报》2020,31(12):3183-3189
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   

9.
The shape-controlled synthesis of noble metal nanocrystals (NCs) bounded by high-index facets is a current research interest because the products have the potential of significantly improving the catalytic performance of NCs in industrially important reactions. This study reports a versatile method for synthesizing polyhedral NCs enclosed by a variety of high-index Pd facets. The method is based on the heteroepitaxial growth of Pd layers on concave trisoctahedral (TOH) gold NC seeds under careful control of the growth kinetics. Polyhedral Au@Pd NCs with three different classes of high-index facets, including concave TOH NCs with {hhl} facets, concave hexoctahedral (HOH) NCs with {hkl} facets, and tetrahexahedral (THH) NCs with {hk0} facets, can be formed in high yield. The Miller indices of NCs are also modifiable, and we have used the THH NCs as a demonstrative example. The catalytic activities of these NCs were evaluated by the structure-sensitive reaction of formic acid electro-oxidation. The results showed that the high-index facets are generally more active than the low-index facets. In summary, a seeded growth process based on concave high-index faceted monometallic TOH NC templates and careful control of the growth kinetics is a simple and effective strategy for the synthesis of noble metal NCs with high-index facets. It also offers tailorability of the surface structure in shape-controlled synthesis.  相似文献   

10.
Palladium nanocrystals with a variety of shapes have received particular interest in recent years due to their unique properties in catalysis. Herein, Pd concave nanocubes with high‐index facets (Pd‐CNs) was synthesized by a simple water‐based route without seeds using L‐ascorbic acid (AA) as the reduction agent in the presence of CTAB. X‐ray diffraction and transmission electron microscopy were employed to demonstrate the formation of concave structures with high‐index facets of the Pd‐CNs with an average size of 17.5 nm. The as‐prepared Pd‐CNs presented significantly higher catalytic activity than commercial Pd/C (an average particle size of 4.7 nm) in the electro‐oxidation of methanol, but exhibited weaker property in Suzuki coupling reaction, which provided an evidence for the effect of shape and size on different reactions.  相似文献   

11.
In this study, a new series of Cu(2)O nanocrystals with systematic shape evolution from cubic to face-raised cubic, edge- and corner-truncated octahedral, all-corner-truncated rhombic dodecahedral, {100}-truncated rhombic dodecahedral, and rhombic dodecahedral structures have been synthesized. The average sizes for the cubes, edge- and corner-truncated octahedra, {100}-truncated rhombic dodecahedra, and rhombic dodecahedra are approximately 200, 140, 270, and 290 nm, respectively. An aqueous mixture of CuCl(2), sodium dodecyl sulfate, NaOH, and NH(2)OH·HCl was prepared to produce these nanocrystals at room temperature. Simple adjustment of the amounts of NH(2)OH·HCl introduced enables this particle shape evolution. These novel particle morphologies have been carefully analyzed by transmission electron microscopy (TEM). The solution color changes quickly from blue to green, yellow, and then orange within 1 min of reaction in the formation of nanocubes, while such color change takes 10-20 min in the growth of rhombic dodecahedra. TEM examination confirmed the rapid production of nanocubes and a substantially slower growth rate for the rhombic dodecahedra. The rhombic dodecahedra exposing only the {110} facets exhibit an exceptionally good photocatalytic activity toward the fast and complete photodegradation of methyl orange due to a high number density of surface copper atoms, demonstrating the importance of their successful preparation. They may serve as effective and cheap catalysts for other photocatalytic reactions and organic coupling reactions.  相似文献   

12.
In this letter, we report a quantitative analysis of how a Pt(Ⅱ) precursor is reduced to atoms at different temperatures for the formation of Pt nanocrystals with different morphologies and sizes. Our results suggest that in the early stage of a synthesis, the Pt(Ⅱ) precursor is reduced to atoms exclusively in the solution phase, followed by homogeneous nucleation to generate nuclei and then seeds. At a relatively low reaction temperature such as 22℃, the growth of the seeds is dominated by autocatalytic surface reduction that involves the adsorption and then reduction of the Pt(Ⅱ) precursor on the surface of the just-formed seeds. This particular growth pathway results in relatively large assemblies of Pt nanocrystals. When the reaction temperature is increased to 100℃, the dominant reduction pathway will be switched from surface to solution phase, producing much smaller assemblies of Pt nanocrystals. Our results also demonstrate that a similar trend applies to the seed-mediated growth of Pt nanocrystals in the presence of Pd nanocubes.  相似文献   

13.
Au–Pd core–shell nanocrystals with tetrahexahedral (THH), cubic, and octahedral shapes and comparable sizes were synthesized. Similar‐sized Au and Pd cubes and octahedra were also prepared. These nanocrystals were used for the hydrogen‐evolution reaction (HER) from ammonia borane. Light irradiation can enhance the reaction rate for all the catalysts. In particular, Au–Pd THH exposing {730} facets showed the highest turnover frequency for hydrogen evolution under light with 3‐fold rate enhancement benefiting from lattice strain, modified surface electronic state, and a broader range of light absorption. Finite‐difference time‐domain (FDTD) simulations show a stronger electric field enhancement on Au–Pd core–shell THH than those on other Pd‐containing nanocrystals. Light‐assisted nitro reduction by ammonia borane on Au–Pd THH was also demonstrated. Au–Pd tetrahexahedra supported on activated carbon can act as a superior recyclable plasmonic photocatalyst for hydrogen evolution.  相似文献   

14.
PVP (poly(vinyl pyrrolidone)) is a common polymer that behaves as a surface-regulating agent that shapes metal nanocrystals in the polyol process. We have used different polymers containing tertiary amide groups, namely PVCL (poly(vinyl caprolactam)) and PDMAm (poly(N,N-dimethyl acrylamide)), for the synthesis of gold polyhedrons, including octahedrons, cuboctahedrons, cubes, and higher polygons, under the present polyol reaction conditions. The basicity and surface coordination power of the polymers are in the order of PVCL, PVP, and PDMAm. A correlation is observed between the coordination power of the polymers and the resulting gold nanocrystal size. Strong coordination and electron donation from the polymer functional groups to the gold surface restrict particle growth rates, which leads to small nanocrystals. The use of PVCL can yield gold polyhedral structures with small sizes, which cannot be achieved in the reactions with PVP. Simultaneous hydrolysis of the amide group in PDMAm leads to carboxylate functionality, which is very useful for generating chemical and bioconjugates through the formation of ester and amide bonds.  相似文献   

15.
We report highly facet-dependent electrical properties of Cu(2)O nanocubes and octahedra and significant enhancement of gold nanocrystal cores to the electrical conductivity of Au-Cu(2)O core-shell octahedra. Cu(2)O nanocubes and octahedra and Au-Cu(2)O core-shell cubes and octahedra were synthesized by following our reported facile procedures at room temperature. Two oxide-free tungsten probes attached to a nanomanipulator installed inside a scanning electron microscope made contacts to a single Cu(2)O nanocrystal for the I-V measurements. Pristine Cu(2)O octahedra bounded by {111} facets are 1100 times more conductive than pristine Cu(2)O cubes enclosed by {100} faces, which are barely conductive. Core-shell cubes are only slightly more conductive than pristine cubes. A 10,000-fold increase in conductivity over a cube has been recorded for an octahedron. Remarkably, core-shell octahedra are far more conductive than pristine octahedra. The same facet-dependent electrical behavior can still be observed on a single nanocrystal exposing both {111} and {100} facets. This new fundamental property may be observable in other semiconductor nanocrystals. We also have shown that both core-shell cubes and octahedra outperform pristine cubes and octahedra in the photodegradation of methyl orange. Efficient photoinduced charge separation is attributed to this enhanced photocatalytic activity. Interestingly, facet-selective etching occurred over the {100} corners of some octahedra and core-shell octahedra during photocatalysis. The successful preparation of Au-Cu(2)O core-shell heterostructures with precise shape control has offered opportunities to discover new and exciting physical and chemical properties of nanocrystals.  相似文献   

16.
This article presents a quantitative analysis of the role played by poly(vinylpyrrolidone) (PVP) in seed-mediated growth of Ag nanocrystals. Starting from Ag nanocubes encased by {100} facets as the seeds, the resultant nanocrystals could take different shapes depending on the concentration of PVP in the solution. If the concentration was above a critical value, the seeds simply grew into larger cubes still enclosed by {100} facets. When the concentration fell below a critical value, the seeds would evolve into cuboctahedrons enclosed by a mix of {100} and {111} facets and eventually octahedrons completely covered by {111} facets. We derived the coverage density of PVP on Ag(100) surface by combining the results from two measurements: (i) cubic seeds were followed to grow at a fixed initial concentration of PVP to find out when {111} facets started to appear on the surface, and (ii) cubic seeds were allowed to grow at reduced initial concentrations of PVP to see at which concentration {111} facets started to appear from the very beginning. We could calculate the coverage density of PVP from the differences in PVP concentration and the total surface area of Ag nanocubes between these two samples. The coverage density was found to be 140 and 30 repeating units per nm(2) for PVP of 55,000 and 10,000 g/mol in molecular weight, respectively, for cubic seeds of 40 nm in edge length. These values dropped slightly to 100 and 20 repeating units per nm(2), respectively, when 100 nm Ag cubes were used as the seeds.  相似文献   

17.
This article describes an aqueous method for the synthesis of Pd seeds with a single‐crystal structure and a uniform diameter of 3 nm and their use for the growth of Pd nanocrystals with a variety of shapes. We have also investigated the effects of a number of parameters, including the temperature, reducing power of the reductant, and capping agent on the reduction rate of a Pd precursor, and thus the final size, size distribution, and morphology of the Pd seeds. By taking advantage of the coordination effect of Br? ions with Pd2+ ions and their selective adsorption on the Pd(100) surface, Pd nanocrystals with a number of distinct shapes could be conveniently produced by varying the concentration of KBr added into the growth solution. This work provides a general and facile method for the green synthesis of Pd nanocrystals with controlled shapes, especially for the preparation of Pd nanocrystals with sizes in the sub‐10 nm regime.  相似文献   

18.
We demonstrated that single-crystalline cobalt monoxide (CoO) hollow spheres and octahedra could be selectively synthesized via thermal decomposition of cobalt(II) acetylacetonate in 1-octadecene solvent in the presence of oleic acid and oleylamine. The morphologies and sizes of as-prepared CoO nanocrystals could be controlled by adjusting the reaction parameters. Cobalt oxide (Co(3)O(4)) hollow spheres and octahedra could also be selectively obtained via calcination method using corresponding CoO hollow spheres and octahedra as precursors. The morphology, size and structure of the final products were investigated in detail by XRD, SEM, TEM, HRTEM, DSC, TG, and XPS. The results revealed that the electrochemical performance of cobalt oxide hollow spheres is much better than that of cobalt oxide octahedra, which may be related to the degree of crystallinity, size, and morphology of cobalt oxides.  相似文献   

19.
We report a novel approach of seeded emulsion polymerization in which nanocrystals are used as seeds. Ultrasmall biocompatible polymer-coated nanocrystal with sizes between 15 and 110 nm could be prepared in a process that avoids any treatment with high shear forces or ultrasonication. The number of nanocrystals per seed, the size of the seeds, and the shell thickness can be independently adjusted. Single encapsulated nanocrystals in ultrasmall nanobeads as well as clusters of nanocrystals can be obtained. Polysorbat-80 was used as surfactant. It consists of poly(ethylene glycol) (PEG) chains, giving the particles outstanding biofunctional characteristics such as a minimization of unspecific interactions.  相似文献   

20.
We have employed a number of reducing and capping agents to obtain Ag(0) metallic nanoparticles of various sizes and morphologies. The size and morphology were tuned by selecting reducing and capping agents. Spherical particles of 15 and 43 nm diameter were obtained when 1 wt% aqueous starch solution of AgNO3 precursor salt was reduced by d(+)-glucose and NaOH, respectively, on heating at 70 °C for 30 min. Smaller size particles obtained in the case of d(+)-glucose reduction has been attributed to the slow reduction rate by mild reducing agent d(+)-glucose compared to strong NaOH. Conducting the reduction at ambient temperature of silver salt in liquid crystalline pluronic P123 and L64 also gave spherical particles of 8 and 24 nm, respectively, without the addition of any separate reducing agent. NaOH reduction of salt in ethylene glycol (11 g)/polyvinyl pyrolidone (PVP; 0.053 g) mixture produced large self-assembled cubes of 520 nm when smaller (26–53 nm) star-shaped sharp-edged structures formed initially aggregated on heating the preparation at 190 °C for 1 h. Increasing the amount of PVP (0.5 g) in ethylene glycol (11 g) and heating at 70 °C for 30 min yielded a mixture of spherical and non-spherical (cubes, hexagons, pentagons, and triangle) particles without the addition of an extra reducing agent. Addition of 5 wt% PVP to 1 wt% aqueous starched solution resulted in the formation of a mixture of spherical and anisotropic structures when solution heated at 70 °C for 1 h. Homogeneous smaller sized (29 nm) cubes were synthesized by NaOH reduction of AgNO3 in 12.5 wt% of water-soluble polymer poly(methyl vinyl ether) at ambient temperature in 30 min reaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号