首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DOTA derivative that contains an anhydride group was readily synthesized by reacting DOTAGA with acetic anhydride and its reactivity was investigated. Opening the anhydride with propylamine led to the selective formation of one of two possible regioisomers. The structure of the obtained isomer was unambiguously determined by 1D and 2D NMR experiments, including COSY, HMBC, and NOESY techniques. This bifunctional chelating agent offers a convenient and attractive approach for labeling biomolecules and, more generally, for the synthesis of a large range of DOTA derivatives. The scope of the reaction was extended to prepare DOTA‐like compounds that contained various functional groups, such as isothiocyanate, thiol, ester, and amino acid moieties. This versatile building block was also used for the synthesis of a bimodal tag for SPECT or PET/optical imaging.  相似文献   

2.
通过优化设计,合成了高产率的DTPA和DOTA配体.通过液相发散法制得第三代肽类树状大分子,其外围氨基分别用两种不同保护基团保护,且两种保护基团的个数比精确控制为18∶6,通过选择性脱去保护基团,其中一种氨基与DTPA、DOTA偶联,或与丁二酸酐反应,并与金属离子钆螯合,制得G3-18Gd-DTPA-6COOH,G3-...  相似文献   

3.
A general synthetic route to two DOTA-linked N-Fmoc amino acids (DOTA-F and DOTA-K) is described that allows insertion of DOTA at any endo-position within a peptide sequence. Three model pentapeptides were prepared to test the general utility of these derivatives in solid-phase peptide synthesis. Both DOTA derivatives reacted smoothly by means of standard HBTU activation chemistry to the point of insertion of the DOTA amino acid, but extension of the peptide chain beyond the DOTA-amino acid insertion required the use of pre-activated C-pentafluorophenyl ester N-alpha-Fmoc amino acids. Three Gal-80 binding peptides (12-mers) were then prepared by using this methodology with DOTA positioned either at the N terminus or at one of two different internal positions;the binding of the resulting GdDOTA-12-mers to Gal-80 were compared. The methodology described here allows versatile, controlled introduction of DOTA into any location within a peptide sequence. This provides a potential method for the screening of libraries of DOTA-linked peptides for optimal targeting properties.  相似文献   

4.
A practical, convergent synthesis of prostate-specific membrane antigen (PSMA) targeted imaging agents for MRI, PET, and SPECT of prostate cancer has been developed. In this approach, metals chelated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were placed on the side chains of lysine early in the synthesis to form imaging modules. These are coupled to targeting modules, in this case consisting of the PSMA-binding urea DCL, bonded to an activated linker. The modular approach to targeted molecular imaging agents (TMIAs) offers distinct advantages. By chelating the MRI contrast metal Gd early, it doubles as a protecting group for DOTA. Standard coupling and deprotection steps may be utilized to assemble the modules into peptides, and the need for tri-tert-butyl protection of DOTA requiring removal by strong acid is averted. This enables mild conjugation of the imaging module to a wide variety of targeting agents in the final step. It was further discovered that two labile metals, La3+ or Ce3+, can be used as placeholders in DOTA during the synthesis, then transmetalated in mild acid by Cu2+, Ga3+, In3+, and Y3+, metals used in PET/SPECT. This enables the efficient synthesis of nonradioactive analogues of targeted molecular imaging agents that may be transported or stored until needed. A simple and mild two-step transmetalation, involving de-metalation in dilute acid, followed by rapid chelation of the radioactive metal, may be conveniently performed later at the clinic to provide the TMIAs for PET or SPECT.  相似文献   

5.
We report the crystal structures of antibody 2D12.5 Fab bound to an yttrium-DOTA analogue and separately to a gadolinium-DOTA analogue. The rare earth elements have many useful properties as probes, and 2D12.5 binds the DOTA (1,4,7,10-tetraazacyclododecane-N,N',N' ',N' "-tetraacetic acid) complexes of all of them (Corneillie et al. J. Am. Chem. Soc. 2003, 125, 3436-3437). The structures show that there are no direct protein-metal interactions: a bridging water acts as a link between the protein and metal, with the chelate present as the M isomer in each case. DOTA forms an amphipathic cylinder with the charged carboxylate groups toward the face of the chelate near the metal ion, while nonpolar methylene groups from the macrocycle and the carboxymethyl groups occupy the rear and sides of the molecule. The orientation of the metal-DOTA in the 2D12.5 complex places most of the methylene carbon atoms of DOTA in hydrophobic contact with aromatic protein side chains. Other binding interactions between the metal complex and the antibody include a bidentate salt bridge, four direct H-bonds, and four to five water-mediated H-bonds. We find that 2D12.5 exhibits enantiomeric binding generality, binding yttrium chelates in both Lambda(deltadeltadeltadelta) and Delta(lambdalambdalambdalambda) configurations with modestly different affinities. This develops from the symmetrical nature of the DOTA chelate, which places heteroatoms and hydrophobic atoms in approximately the same relative positions regardless of the helicity of DOTA.  相似文献   

6.
A convenient synthesis of novel bifunctional poly(amino carboxylate) chelating agents allowing chemoselective attachment to highly functionalized biomolecules is described. Based on the well known chelator 1,4,7,10-tetraazacyclodecane-1,4,7,10-tetraacetic acid (DOTA), we synthesized novel bifunctional chelating agents bearing additional functional groups by alkylating 1,4,7,10-tetraazacyclododecane (cyclen) with one equivalent of para-functionalized alkyl 2-bromophenyl-acetate and three equivalents of tert-butyl 2-bromoacetate. The resulting compounds, which contain an additional carbonyl or alkyne functionality, allow site specific labeling of appropriately functionalized unprotected biomolecules in a rapid manner via click reactions. This was demonstrated by the attachment of our new DOTA derivatives to the somatostatin analogue Tyr3-octreotate by chemoselective oxime ligation and CuI-catalyzed azide-alkyne cycloaddition. Initial biodistribution studies in mice with the radiometalated compound demonstrated the applicability of the described DOTA conjugation.  相似文献   

7.
An amine-derivatized DOTA has been used to modify the surface of a polymeric support for conventional solid phase peptide synthesis (SPPS) following standard Fmoc chemistry methods. This methodology was used to synthesize a peptide-DOTA conjugate that was demonstrated to be a PARACEST MRI contrast agent. Therefore, this synthesis methodology can facilitate Fmoc SPPS of molecular imaging contrast agents.  相似文献   

8.
The synthesis and characterization of a new class of DOTA (1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane) monoamide-linked glycoconjugates (glucose, lactose and galactose) of different valencies (mono, di and tetra) and their Sm(III), Eu(III) and Gd(III) complexes are reported. The 1H NMR spectrum of Eu(III)-DOTALac2 shows the predominance of a single structural isomer of square antiprismatic geometry of the DOTA chelating moiety and fast rotation about the amide bond connected to the targeting glycodendrimer. The in vitro relaxivity of the Gd(III)-glycoconjugates was studied by 1H nuclear magnetic relaxation dispersion (NMRD), yielding parameters close to those reported for other DOTA monoamides. The known recognition of sugars by lectins makes these glycoconjugates good candidates for medical imaging agents (MRI and gamma scintigraphy).  相似文献   

9.

The cathelicidin-derived peptide (CDP1) is a human antimicrobial peptide that preferentially targets bacterial membranes in response to infection. CDP1 was functionalised with NODAGA and DOTA for complexation with gallium-68 to evaluate its potential as an infection imaging tracer. The synthesis of [68Ga]Ga–NODAGA–CDP1 and [68Ga]Ga–DOTA–CDP1 were optimised for pH, molarity, incubation time and temperature, and product purification. The integrity and protein binding were investigated employing [68Ga]GaCl3 and [68Ga]Ga–DOTA–TATE as internal references. [68Ga]Ga–NODAGA–CDP1 displayed good labelling properties with higher product yield compared to [68Ga]Ga–DOTA–CDP1. In contrast, [68Ga]Ga–DOTA–CDP1 showed better stability and is the preferred candidate for an in vivo investigation.

  相似文献   

10.
This work describes the modification of the chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N' ',N' "-tetraacetic acid (DOTA) to improve the rate of metal loading for radioimmunotherapy applications. Previous ab initio calculations predicted that the compounds 1,4,7,10-tetra(carboxyethyl)-1,4,7,10-tetraazacyclododecane (DO4Pr) and 1,4,7-tris(carboxymethyl)-10-(carboxyethyl)-1,4,7,10-tetraazacyclododecane (DO3A1Pr) have a ca. 2000-fold improvement in yttrium metal loading rates compared to those of DOTA (Jang, Y. H.; Blanco, M.; Dasgupta, S.; Keire, D. A.; Shively, J. E.; Goddard, W. A., III. J. Am. Chem. Soc. 1999, 121, 6142-6151). In this study, we report the synthesis, purification, (1)H-NMR chemical shift assignments, pK(a) values, metal loading rate measurements, and additional ab initio calculations of these two compounds. The yttrium loading rates of DO3A1Pr are approximately twice those of DOTA, at pH 4.6 and 37 degrees C. The NMR data indicates that the DO4Pr analogue forms a stable type I complex but does not form a type II complex. The new ab initio calculations performed on DO4Pr and DO3A1Pr indicate that the rate-determining step is the deprotonation of the first macrocycle amine proton, not the second proton as assumed in the previous calculations. The new calculations predict an improvement in the rate of metal loading that more closely matches the experimentally observed change in the rate.  相似文献   

11.
The design and synthesis of a phthalocyanine – Gd‐DOTA conjugate is presented to open the way to novel molecular theranostics, combining the properties of MRI contrast imaging with photodynamic therapy. The rational design of the conjugate integrates isomeric purity of the phthalocyanine core substitution, suitable biocompatibility with the use of polyoxo water‐solubilizing substituents, and a convergent synthetic strategy ended by the use of click chemistry to graft the Gd‐DOTA moiety to the phthalocyanine. Photophysical and photochemical properties, contrast imaging experiments and preliminary in vitro investigations proved that such a combination is relevant and lead to a new type of potential theranostic agent.  相似文献   

12.
The synthesis of novel NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelating groups bearing perfluorinated appendages is described. DOTA and NOTA groups are used in the production of radiopharmaceutical agents for PET and SPECT imaging (by chelation of radioactive metal ions), as well as MRI contrast agents (by chelation of lanthanide Ln3+ ions). The novel perfluorinated variants disclosed herein will enhance the synthesis and purification of such agents, as they are compatible with fluorous purification strategies. Moreover, the perfluorous tag is anticipated to be detectable by 19F-MRI, suggesting future applications in hybrid molecular imaging such as PET–MRI.  相似文献   

13.
气相色谱法直接测定α-松油佛-马来酸酐加成物,不但免去了容量滴定法测定时必先分离共存马来酸酐的繁琐手续,而且方法简便、快速,能满足合成过程中跟踪分析的需要。  相似文献   

14.
Quantum chemical calculations were performed to study the differences between the important radiopharmaceutical metals yttrium (Y) and indium (In) bound by DOTA and modified DOTA molecules. Energies were calculated at the MP2/6-31+G(d)//HF/6-31G(d) levels, using effective core potentials on the Y and In ions. Although the minimum energy structures obtained are similar for both metal ion-DOTA complexes, changes in coordination and local environment significantly affect the geometries and energies of these complexes. Coordination by a single water molecule causes a change in the coordination number and a change in the position of the metal ion in In-DOTA, but Y-DOTA is hardly affected by water coordination. When one of the DOTA carboxylates is replaced by an amide, the resulting structures show a large variation between the Y and In ions. A six-residue model of the active site containing metal ion-DOTA showed that the Y-DOTA structure optimized to a structure similar to the crystal structure but that the water molecule in In-DOTA disrupts the salt bridge between Arg98B and a carboxylate side chain of DOTA. These observed differences could in part explain the differential binding constants for Y-DOTA and In-DOTA to the antibody 2D12.5.  相似文献   

15.
DOTA was conjugated to the N-terminus of a 12-mer peptide by using standard peptide synthesis chemistry. The peptide, first isolated by phage display, maintained a high affinity for its protein-binding target, Gal-80, even with GdDOTA attached. The high affinity constant (KA = 5 x 105 M-1) combined with the high relaxivity of the resulting GdDOTA-peptide.protein complex (r1bound = 44.8 +/- 1.7 mM-1 s-1) allowed detection of Gal-80 at muM levels using a standard magnetic resonance imaging protocol. This novel peptide-based, binding-activated MRI method could potentially be used to screen a wide variety of biomolecules.  相似文献   

16.
This work describes the synthesis and the conformational properties of new polymethylated macrocyclic ligands of potential interest for magnetic resonance imaging. M4cyclen, (2S,5S,8S,11S)-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecane, was obtained by cyclotetramerization of (2S)-1-benzyl-2-methylaziridine followed by catalytic hydrogenation. The ligands M4DOTA, [(2S,5S,8S,11S)-4,7,10-tris-carboxymethyl-2,5,8,11-tetramethyl- 1,4,7,10-tetraazacyclododecan-1-yl]acetic acid, and M4DOTMA, (R)-2-[(2S,5S,8S,11S)-4,7,10-tris-((R)-1-carboxyethyl)-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecan-1-yl]propionic acid, were prepared by carboxyalkylation of M4cyclen in the presence of Na(2)CO(3). The triacetic ligand M4DO3A, [(2S,5S,8S,11S)-4,7-bis-carboxymethyl-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecan-1-yl]acetic acid, was obtained in good yields without traces of M4DOTA if NaHCO(3) was the acid scavenger when adding the carboxylic arms. In the same conditions, cyclen yielded M4DOTA in 82% yield. The difference between the reactivity of cyclen and M4cyclen is assigned to the high basicity of the substituted tetraamine as estimated by NMR titration. The one- and two-dimensional (1)H and (13)C NMR spectra of M4DOTA and M4DOTMA in the H(4)L or H(6)L(2+) forms are interpreted as arising from a slow exchange between two elongated geometries in which the methyl substituents are in one of the two possible equatorial-like positions, either close to or away from the carboxylic arms. The axial-like positions are sterically too crowded and cannot be occupied by the methyl groups. An elongated conformation is also adopted by DOTMA, (R)-2-[4,7,10-tris-((R)-carboxyethyl)-1,4,7,10-tetraazacyclododecan-1-yl]propionic acid, in the H(6)L(2+) form. The rigidification of the polymethylated ligands allows a detailed NMR analysis that cannot be carried out on the parent unsubstituted ligand DOTA.  相似文献   

17.
The redox potential of the Ce(IV)/Ce(III) DOTA is determined to be 0.65 V versus SCE, pointing out a stabilization of ~13 orders of magnitude for the Ce(IV)DOTA complex, as compared to Ce(IV)aq. The Ce(III)DOTA after electrochemical oxidation yields a Ce(IV)DOTA complex with a t1/2 ~3 h and which is suggested to retain the “in cage” geometry. Chemical oxidation of Ce(III)DOTA by diperoxosulfate renders a similar Ce(IV)DOTA complex with the same t1/2. From the electrochemical measurements, one calculates logK (Ce(IV)DOTA2?) ~ 35.9. Surprisingly, when Ce(IV)DOTA is obtained by mixing Ce(IV)aq with DOTA, a different species is obtained with a 2 : 1(M : L) stoichiometry. This new complex, Ce(IV)DOTACe(IV), shows redox and spectroscopic features which are different from the electrochemically prepared Ce(IV)DOTA. When one uses thiosulfate as a reducing agent of Ce(IV)DOTACe(IV), one gets a prolonged lifetime of the latter. The reductant seems to serve primarily as a coordinating ligand with a geometry which does not facilitate inner sphere electron transfer. The reduction process rate in this case could be dictated by an outer sphere electron transfer or DOTA exchange by S2O32?. Both Ce(IV)DOTA and Ce(IV)DOTACe(IV) have similar kinetic stability and presumably decompose via decarboxylation of the polyaminocarboxylate ligand.  相似文献   

18.
In the present work a modular pathway towards the synthesis of a new versatile MRI contrast agent is reported and its physico-chemical properties are described. Two different functional groups were attached on two arms of the gadolinium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) in order to get a platform able to bind one probe designed to target specific biological marker and a fluorescent molecule likely to be used for optical imaging. The nuclear magnetic relaxation dispersion (NMRD) profile, the oxygen-17 relaxometric NMR study and stability assessment versus transmetalation of the Gd-complex show that this new contrast agent has a relaxivity and transmetalation stability similar to Gd–DOTA.  相似文献   

19.
The phomoidrides are a structurally fascinating family of natural products which possess moderate inhibitory activity against Ras farnesyl transferase and squalene synthase. Since their discovery they have inspired a great deal of attention from synthetic chemists. Our own work, culminating in an efficient synthesis of the fully elaborated tetracyclic core of phomoidrides B and D, is described herein. The synthesis relies on a late stage tandem reaction involving a novel carbonylation reaction that delivers the strained bicyclic pseudoester system, which strain in turn drives a highly efficient silyloxy-Cope rearrangement that delivers the tetracyclic core of phomoidrides B and D. Several examples of this powerful tandem reaction are presented that document its tolerance of significant structural variation. The application of this methodology to the synthesis of a phomoidride D precursor lacking only the maleic anhydride is described, and the prospects for the completion of a total synthesis are discussed.  相似文献   

20.
The rate of water exchange between the inner sphere of a paramagnetic ion and bulk water is an important parameter in determining the magnitude of the chemical exchange saturation transfer signal from paramagnetic CEST agents (paraCEST). This is governed by various geometric, steric and ligand field factors created by macrocyclic ligands surrounding the paramagnetic metal ion. Our previous on‐bead combinatorial studies of di‐peptoid–europium(III)–1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA)–tetraamide complexes revealed that negatively charged groups in the immediate vicinity of the metal center strongly enhances the CEST signal. Here, we report a solid phase synthesis and on‐bead imaging of 76 new DOTA derivatives that are developed by coupling with a single residue onto each of the three arms of a DOTA–tetraamide scaffold attached to resin beads. This single residue predominantly carries negatively charged groups blended with various physico‐chemical characteristics. We found that non‐bulky negatively charged groups are best suited at the immediate vicinity of the metal ion, while positive, bulky and halogen containing moieties suppress the CEST signal. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号