首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles. In this study, modified Gilmore equations accounting for inter-bubble interactions were coupled with the Zener viscoelastic model to simulate the dynamics of multi-bubble cavitation in viscoelastic media. Results showed that the cavitation dynamics (e.g., acoustic resonant response, nonlinear oscillation behavior and bubble collapse strength) of differently-sized bubbles depend differently on the medium viscoelasticity and each bubble is affected by its neighboring bubbles to a different degree. More specifically, increasing medium viscosity drastically dampens the bubble dynamics and weakens the bubble collapse strength, while medium elasticity mainly affects the bubble resonance at which the bubble collapse strength is maximum. Differently-sized bubbles can achieve resonances and even subharmonic resonances at high driving acoustic pressures as the elasticity changes to certain values, and the resonance frequency of each bubble increases with the elasticity increasing. For the interactions between the size polydisperse bubbles, it indicated that the largest bubble generally has a dominant effect on the dynamics of smaller ones while in turn it is almost unaffected, exhibiting a pattern of destructive and constructive interactions. This study provides a valuable insight into the acoustic cavitation dynamics of multiple interacting polydisperse bubbles in viscoelastic media, which may offer a potential of controlling the medium viscoelasticity to appropriately manipulate the dynamics of multi-bubble cavitation for achieving proper cavitation effects according to the desired application.  相似文献   

2.
球状泡群内气泡的耦合振动   总被引:1,自引:0,他引:1       下载免费PDF全文
王成会  莫润阳  胡静  陈时 《物理学报》2015,64(23):234301-234301
振动气泡形成辐射场影响其他气泡的运动, 故多气泡体系中气泡处于耦合振动状态. 本文在气泡群振动模型的基础上, 考虑气泡间耦合振动的影响, 得到了均匀球状泡群内振动气泡的动力学方程, 以此为基础分析了气泡的非线性声响应特征. 气泡间的耦合振动增加了系统对每个气泡的约束, 降低了气泡的自然共振频率, 增强了气泡的非线性声响应. 随着气泡数密度的增加, 振动气泡受到的抑制增强; 增加液体静压力同样可抑制泡群内气泡的振动, 且存在静压力敏感区(1–2 atm, 1 atm=1.01325×105 Pa); 驱动声波对气泡振动影响很大, 随着声波频率的增加, 能够形成空化影响的气泡尺度范围变窄. 在同样的声条件、泡群尺寸以及气泡内外环境下, 初始半径小于5 μm 的气泡具有较强的声响应. 气泡耦合振动会削弱单个气泡的空化影响, 但可延长多气泡系统空化泡崩溃发生的时间间隔和增大作用范围, 整体空化效应增强.  相似文献   

3.
Acoustic cavitation is a very important hydrodynamic phenomenon, and is often implicated in a myriad of industrial, medical, and daily living applications. In these applications, the effect mechanism of liquid surface tension on improving the efficiency of acoustic cavitation is a crucial concern for researchers. In this study, the effects of liquid surface tension on the dynamics of an ultrasonic driven bubble near a rigid wall, which could be the main mechanism of efficiency improvement in the applications of acoustic cavitation, were investigated at the microscale level. A synchronous high-speed microscopic imaging method was used to clearly record the temporary evolution of single acoustic cavitation bubble in the liquids with different surface tension. Meanwhile, the bubble dynamic characteristics, such as the position and time of bubble collapse, the size and stability of the bubbles, the speed of bubble boundaries and the micro-jets, were analyzed and compared. In the case of the single bubbles near a rigid wall, it was found that low surface tension reduces the stability of the bubbles in the liquid medium. Meanwhile, the bubbles collapse earlier and farther from the rigid wall in the liquids with lower surface tension. In addition, the surface tension has no significant influence on the speed of the first micro-jet, but it can substantially increase the speed of second and the third micro-jets after the first collapse of the bubble. These effects of liquid surface tension on the bubble dynamics can explain the mechanism of surfactants in numerous fields of acoustic cavitation for facilitating its optimization and application.  相似文献   

4.
Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner.  相似文献   

5.
Cavitation damage is a micro, high-speed, multi-phase complex phenomenon caused by the near-wall bubble group collapse. The current numerical simulation method of cavitation mainly focuses on the collapse impact of a single cavitation bubble. The large-scale simulation of the cavitation bubble group collapse is difficult to perform and has not been studied, to the best of our knowledge. In this study, the equivalent model of impact loading of acoustic bubble collapse micro-jets is proposed to study the cavitation erosion damage of materials. Based on the theory of the micro-jet and the water hammer effect of the liquid–solid impact, an equivalent model of impact loading of a single acoustic bubble collapse micro-jet is established under the principle of deformation equivalence. Since the acoustic bubbles can be considered uniformly distributed in a small enough area, an equivalent model of impact loading of multiple acoustic bubble collapse micro-jets in a micro-segment can be derived based on the equivalent results of impact loading of a single acoustic bubble collapse micro-jet. In fact, the equivalent methods of cavitation damage loading for single and multiple near-wall acoustic bubble collapse micro-jets are formed. The verification results show the law of cavitation deformation of concrete using equivalent loading is consistent with that of a micro-jet simulation, and the average relative errors and the mean square errors are insignificant. The equivalent method of impact loading proposed in this paper has high accuracy and can greatly improve the calculation efficiency, which provides technical support for numerical simulation of concrete cavitation.  相似文献   

6.
流体体积法(VOF)可以便捷、高效地实现对多相流界面的捕捉和追踪。本文基于VOF方法,对单个空化泡在曲面固壁附近的运动进行了数值模拟,从实验对比、压力场、速度场、温度场演化、溃灭时间、射流速度、固壁温度等方面分析了空化泡溃灭过程的热动力学影响。结果表明,数值模拟得到的空化泡形态演化与实验观测到的现象一致,随着位置参数、泡内外压差及曲面固壁尺寸的改变,空化泡热动力学行为也将发生变化,受到流体运动及射流冲击的影响,溃灭瞬间产生的高温高压使得曲面固壁温度升高。本文研究的曲面固壁附近空化泡溃灭效应,揭示了空化泡与曲面固壁间的相互作用规律,对学术研究及工程应用都具有重要意义。  相似文献   

7.
A passive cavitation detector (PCD) identifies cavitation events by sensing acoustic emissions generated by the collapse of bubbles. In this work, a dual passive cavitation detector (dual PCD), consisting of a pair of orthogonal confocal receivers, is described for use in shock wave lithotripsy. Cavitation events are detected by both receivers and can be localized to within 5 mm by the nature of the small intersecting volume of the focal areas of the two receivers in association with a coincidence detection algorithm. A calibration technique, based on the impulse response of the transducer, was employed to estimate radiated pressures at collapse near the bubble. Results are presented for the in vitro cavitation fields of both a clinical and a research electrohydraulic lithotripter. The measured lifetime of the primary growth-and-collapse of the cavitation bubbles increased from 180 to 420 microseconds as the power setting was increased from 12 to 24 kV. The measured lifetime compared well with calculations based on the Gilmore-Akulichev formulation for bubble dynamics. The radiated acoustic pressure 10 mm from the collapsing cavitation bubble was measured to vary from 4 to 16 MPa with increasing power setting; although the trends agreed with calculations, the predicted values were four times larger than measured values. The axial length of the cavitation field correlated well with the 6-dB region of the acoustic field. However, the width of the cavitation field (10 mm) was significantly narrower than the acoustic field (25 mm) as bubbles appeared to be drawn to the acoustic axis during the collapse. The dual PCD also detected signals from "rebounds," secondary and tertiary growth-and-collapse cycles. The measured rebound time did not agree with calculations from the single-bubble model. The rebounds could be fitted to a Rayleigh collapse model by considering the entire bubble cloud as an effective single bubble. The results from the dual PCD agreed well with images from high-speed photography. The results indicate that single-bubble theory is sufficient to model lithotripsy cavitation dynamics up to time of the main collapse, but that upon collapse bubble cloud dynamics becomes important.  相似文献   

8.
Lithotripter shock waves (SWs) generated in non-degassed water at 0.5 and 2 Hz pulse repetition frequency (PRF) were characterized using a fiber-optic hydrophone. High-speed imaging captured the inertial growth-collapse-rebound cycle of cavitation bubbles, and continuous recording with a 60 fps camcorder was used to track bubble proliferation over successive SWs. Microbubbles that seeded the generation of bubble clouds formed by the breakup of cavitation jets and by bubble collapse following rebound. Microbubbles that persisted long enough served as cavitation nuclei for subsequent SWs, as such bubble clouds were enhanced at fast PRF. Visual tracking suggests that bubble clouds can originate from single bubbles.  相似文献   

9.
Heterogeneous bubble nucleation at surfaces has been notorious because of its irreproducibility. Here controlled multibubble surface cavitation is achieved by using a hydrophobic surface patterned with microcavities. The expansion of the nuclei in the microcavities is triggered by a fast lowering of the liquid pressure. The procedure allows us to control and fix the bubble distance within the bubble cluster. We observe a perfect quantitative reproducibility of the cavitation events where the inner bubbles in the two-dimensional cluster are shielded by the outer ones, reflected by their later expansion and their delayed collapse. Apart from the final bubble collapse phase (when jetting flows directed towards the cluster's center develop), the bubble dynamics can be quantitatively described by an extended Rayleigh-Plesset equation, taking pressure modification through the surrounding bubbles into account.  相似文献   

10.
Acoustic cavitation is the fundamental process responsible for the initiation of most of the sonochemical reactions in liquids. Acoustic cavitation originates from the interaction between sound waves and bubbles. In an acoustic field, bubbles can undergo growth by rectified diffusion, bubble-bubble coalescence, bubble dissolution or bubble collapse leading to the generation of primary radicals and other secondary chemical reactions. Surface active solutes have been used in association with a number of experimental techniques in order to isolate and understand these activities. A strobe technique has been used for monitoring the growth of a single bubble by rectified diffusion. Multibubble sonoluminescence has been used for monitoring the growth of the bubbles as well as coalescence between bubbles. The extent of bubble coalescence has also been monitored using a newly developed capillary technique. An overview of the various experimental results has been presented in order to highlight the complexities involved in acoustic cavitation processes, which on the other hand arise from a simple, mechanical interaction between sound waves and bubbles.  相似文献   

11.
本文对液体内的声空化气泡的成长与破裂过程进行数值计算,得到各种情况下气泡壁的运动情况.通过对不同初始半径、不同频率下声空化气泡运动的计算,得到空化气泡半径小于共振半径,可以增强空化效果,而单一的增强声场的频率并不一定能加强声空化效果,为增强空化效果提供理论依据.研究各种信号作用下声空化气泡成长情况,明确方波信号激励下的...  相似文献   

12.
Aiming at elucidating ultrasonic emulsification mechanisms, the interaction between a single or multiple acoustic cavitation bubbles and gallium droplet interface was investigated using an high-speed imaging technique. To our best knowledge, the moment of emulsification and formation of fine droplets during ultrasound irradiation were observed for the first time. It was found that the detachment of fine gallium droplets occurs from the water-gallium interface during collapse of big cavitation bubbles. The results suggest that the maximum size of cavitation bubble before collapsing is of prime importance for emulsification phenomena. Previous numerical simulation revealed that the collapse of big cavitation bubble is followed by generation of high-velocity liquid jet directed toward the water-gallium interface. Such a jet is assumed to be the prime cause of liquid emulsification. The distance between cavitation bubbles and water-gallium interface was found to slightly affect the emulsification onset. The droplet fragmentation conditions are also discussed in terms of the balance between (1) interfacial and kinetic energies and (2) dynamic and Laplace pressure during droplet formation.  相似文献   

13.
螺旋桨空化噪声连续谱仿真算法   总被引:1,自引:0,他引:1       下载免费PDF全文
笪良龙  谢骏  李玉阳  韩梅 《应用声学》2010,29(4):273-278
螺旋桨空化噪声连续谱由大量空泡随机崩溃所辐射噪声叠加而成。据此,考虑到空泡初始崩溃时刻的随机性和各空泡辐射噪声频谱的相似性,对四种情况空化辐射噪声连续谱特性分别进行了理论分析表明,可依据空泡半径和初始崩溃时间的统计性质,采用蒙特卡罗方法对空化噪声连续谱波形进行仿真建模,模型参数为空泡半径期望值、差异度和随机度,分别相应于确定辐射噪声的基准波形、各空泡噪声频谱相似程度和大量空泡的随机崩溃过程。该方法输入参数物理意义明确,控制简单,能较好地仿真空化噪声连续谱的特性,仿真结果与理论分析吻合较好。  相似文献   

14.
15.
蒋丹  Li Song-Jing  包钢 《物理学报》2008,57(8):5072-5080
流动液体中的压力变化会引起气泡和气穴的产生及破灭,而气泡和气穴又会对液体的流动产生影响及压力变化.为了合理预测流控系统瞬态压力脉动过程中气泡和气穴的体积变化及其对脉动传播过程的影响,基于气泡溶解和析出的物理过程,建立了压力脉动过程中气泡和气穴产生及破灭的数学模型,并提出采用遗传算法对气泡模型中初始气泡体积、气体溶解和析出时间常数进行参数辨识.以一段液压油管路为研究对象,对管路中伴随气泡和气穴的瞬态压力脉动过程进行仿真及实验研究.利用仿真及实验结果,验证了采用遗传算法对气泡模型进行参数辨识的可行性. 关键词: 气泡 气穴 压力脉动 参数辨识  相似文献   

16.
Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 μs. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W.  相似文献   

17.
The ability of cavitation bubbles to effectively focus energy is made responsible for cavitation erosion, traumatic brain injury, and even for catalyse chemical reactions. Yet, the mechanism through which material is eroded remains vague, and the extremely fast and localized dynamics that lead to material damage has not been resolved. Here, we reveal the decisive mechanism that leads to energy focusing during the non-spherical collapse of cavitation bubbles and eventually results to the erosion of hardened metals. We show that a single cavitation bubble at ambient pressure close to a metal surface causes erosion only if a non-axisymmetric energy self-focusing is at play. The bubble during its collapse emits shockwaves that under certain conditions converge to a single point where the remaining gas phase is driven to a shockwave-intensified collapse. We resolve the conditions under which this self-focusing enhances the collapse and damages the solid. High-speed imaging of bubble and shock wave dynamics at sub-picosecond exposure times is correlated to the shockwaves recorded with large bandwidth hydrophones. The material damage from several metallic materials is detected in situ and quantified ex-situ via scanning electron microscopy and confocal profilometry. With this knowledge, approaches to mitigate cavitation erosion or to even enhance the energy focusing are within reach.  相似文献   

18.
Ultrasonic impregnation is thought to be an effective way of permeation of liquid into material through the material-surface reforming with the attack by an ultrasonic cavitation jet or by the shock wave emitted from a collapsing bubble, or through dynamic transformation of material like a sponge. The action of a cavitation bubble can also provide penetration of liquid into the interior of the material. This paper investigates whether there is a correlation between the intensity of sonoluminescence (SL) measured at different positions and the increment in the mass of the wood material (cedar) after sonication with immersion into water in order to clarify the role of cavitation bubbles for ultrasonic impregnation. It was found that a high mass change was obtained for the material located at the position for high (the maximum) SL intensity. The number density of ultrasonic cavitation bubbles that are able to collapse leading to the emission of SL is correlated with the degree of ultrasonic impregnation.  相似文献   

19.
In order to learn more about the physical phenomena occurring in cloud cavitation, the nonlinear dynamics of a spherical cluster of cavitation bubbles and cavitation bubbles in cluster in an acoustic field excited by a square pressure wave are numerically investigated by considering viscosity, surface tension, and the weak compressibility of the liquid.The theoretical prediction of the yield of oxidants produced inside bubbles during the strong collapse stage of cavitation bubbles is also investigated. The effects of acoustic frequency, acoustic pressure amplitude, and the number of bubbles in cluster on bubble temperature and the quantity of oxidants produced inside bubbles are analyzed. The results show that the change of acoustic frequency, acoustic pressure amplitude, and the number of bubbles in cluster have an effect not only on temperature and the quantity of oxidants inside the bubble, but also on the degradation types of pollutants, which provides a guidance in improving the sonochemical degradation of organic pollutants.  相似文献   

20.
Qing-Qin Zou 《中国物理 B》2023,32(1):14302-014302
The cavitation dynamics and mechanical stress in viscoelastic tissues, as the primary mechanisms of some ultrasound therapies, are extremely complex due to the interactions of cavitation bubble with adjacent bubbles and surrounding tissues. Therefore, the cavitation dynamics and resultant mechanical stress of two-interacting bubbles in the viscoelastic tissues are numerically investigated, especially focusing on the effects of the adjacent bubble. The results demonstrate that the mechanical stress is highly dependent on the bubble dynamics. The compressive stress and tensile stress are generated at the stage of bubble expansion and collapse stage, respectively. Furthermore, within the initial parameters examined in this paper, the effects of the adjacent bubble will distinctly suppress the radial expansion of the small bubble and consequently lead its associated stresses to decrease. Owing to the superimposition of two stress fields, the mechanical stresses surrounding the small bubble in the direction of the neighboring bubble are smaller than those in other directions. For two interacting cavitation bubbles, the suppression effects of the nearby bubble on both the cavitation dynamics and the stresses surrounding the small bubble increase as the ultrasound amplitude and the initial radius of the large bubble increase, whereas they decrease with the inter-bubble distance increasing. Moreover, increasing the tissue viscoelasticity will reduce the suppression effects of the nearby bubble, except in instances where the compressive stress and tensile stress first increase and then decrease with the tissue elasticity and viscosity increasing respectively. This study can provide a further understanding of the mechanisms of cavitation-associated mechanical damage to the adjacent tissues or cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号