首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of a capillary electrophoresis-based assay of sirtuin enzymes   总被引:2,自引:0,他引:2  
Fan Y  Ludewig R  Imhof D  Scriba GK 《Electrophoresis》2008,29(18):3717-3723
Sirtuins are a family of nicotinamide adenine dinucleotide (NAD(+))-dependent enzymes catalyzing the deacetylation of acetyl-lysine residues of histones and other proteins. Three 9-fluorenylmethoxycarbonyl (Fmoc)-labeled peptide substrates derived from the amino acid sequence of p53, i.e. Fmoc-KK(Ac)-NH(2), Fmoc-KK(Ac)L-NH(2) and Fmoc-RHKK(Ac)-NH(2), were synthesized and evaluated as substrates of the human isoenzyme SIRT1. The acetylated and respective deacetylated peptides as well as nicotinamide as the reaction product of nicotinamide adenine dinucleotide were separated by capillary electrophoresis in a fused-silica capillary using 200 mM phosphate-Tris buffer, pH 2.7. Sodium hydroxide-mediated sample stacking was performed in order to overcome peak asymmetry due to the high salt and acid content of the sample as well as to enhance UV detection sensitivity. The assay was subsequently validated. Upon incubation of the acetylated peptides for 60 min in the presence of 2.5 U of SIRT1 at least 87% of the peptides was deacetylated, indicating that the new derivatives are efficient substrates of the enzyme.  相似文献   

2.
(R)-(+)-2-Methyl-2-ethyl-3-propiothiolactone was synthesized by debenzylation and cyclization of (?)-2-methyl-2-ethyl-3-benzylmercaptopropionyl chloride under the conditions of Friedel-Crafts synthesis, and by dehydration of (R)-(+)-2-methyl-2-ethyl-3-mercaptopropionic acid with dicyclohexyl carbodiimide. The configuration of the (+)-propiothiolactone was determined by chemical interconversion with (?)-2-methyl-2-ethylsuccinic acid, the absolute configuration of which is known to be (R). The polymerization of (R)-(+)-2-methyl-2-ethyl-3-propiothiolactone was performed in bulk with tetrabutylammonium versatate as catalyst. The specific rotation of the polymer ([α]D +151.7°) compared with the rotation of the low molecular weight model compound (R)-(+)-2-methyl-2-ethyl-3-acetylmercapto-thiolpropionic acid methyl ester ([α]D +55.0°) shows a significant enhancement, thus suggesting the possibility of the presence of rigid conformations in polymer chain.  相似文献   

3.
Upon hexanal-modification in the presence of NaCNBH(3), the oxidized B chain of insulin becomes mono- and further dialkylated on both the N-terminal and Lys(29) residues. A pseudo-MS(3) study was performed with a triple-quadrupole mass spectrometer on the different modified lysine-containing species to gain further insights into the characteristic fragmentation pattern. These fragmentations, in good agreement with true MS(3) measurements obtained using an ion trap mass spectrometer, highlighted characteristic monoalkylated lysine (immonium-NH(3)) and protonated modified caprolactam ions at m/z 168 and 213, respectively. In contrast, no fragment ion derived from a modified lysine residue (immonium or caprolactam) was observed when dialkylation occurs on Lys(29). However, a fragment ion corresponding to a protonated dihexylamine was observed at m/z 186. This loss, characteristic of dialkylated lysine fragmentation, was also observed upon dialkylation of N(alpha)-acetyllysine with either hexanal or pentanal. On the other hand, acetylation and malondialdehyde-modification of the N(alpha)-acetyllysine side chain led mainly to the corresponding modified (immonium-NH(3)) fragment ions at m/z 126 and 138, respectively. Finally, it was demonstrated that precursor ion scanning for both m/z 168 and 213 ions led to specific and sensitive identification of peptides containing hexanal-modified lysine residues within an unfractionated tryptic digest of hexanal-modified apomyoglobin. Thus, Lys(42), Lys(45), Lys(62), Lys(63), Lys(77), Lys(87), Lys(96), Lys(98), Lys(145) and Lys(147) were found to be modified upon reaction with hexanal.  相似文献   

4.
The reaction between N(alpha)-acetyllysine methyl ester (Lys) and 2'-deoxyguanosine (dGuo) was used to study structural aspects of DNA-protein cross-link (DPC) formation. The precise structure of DPCs depended on the nature of the oxidant and cross-linking reactions in which a series of different oxidation conditions generated a distribution of adducts, principally spirodiiminodihydantoins with lysine appended at the purine position of C5 (5-Lys-Sp), C8 (8-Lys-Sp), or both C5 and C8 (5,8-diLys-Sp). Singlet oxygen oxidation of dGuo produced 5-Lys-Sp exclusively when Rose Bengal or methylene blue was used to photochemically generate (1)O2 in the presence of Lys, whereas riboflavin or benzophenone-mediated photochemistry generated lysine radicals and led to C8 adduct formation, yielding 8-Lys-Sp and 5,8-diLys-Sp. Notably, the yield of dGuo modifications from riboflavin photooxidation increased dramatically in the presence of lysine. Oxidation of deoxyguanosine/lysine mixtures with Na2IrCl6 or sulfate radicals produced both 5-Lys-Sp and 8-Lys-Sp. The same adducts were formed in single and double-stranded oligodeoxynucleotides, and these could be analyzed after nuclease digestion. Adduct formation in duplex DNA was somewhat dependent on the accessibility of lysine to C5 vs C8 of the purine. No adduct formation was detected between lysine and the other nucleobases T, C, or A. Overall, the precise location of adduct formation at C5 vs C8 of guanine appears to be diagnostic of the oxidation pathway.  相似文献   

5.
Ohla S  Beyreiss R  Scriba GK  Fan Y  Belder D 《Electrophoresis》2010,31(19):3263-3267
A microchip-based assay to monitor the conversion of peptide substrates by human recombinant sirtuin 1 (hSIRT1) is presented. For this purpose a fused silica microchip consisting of a microfluidic separation structure with an integrated serpentine micromixer has been used. As substrate for the assay, we used a 9-fluorenylmethoxycarbonyl (Fmoc)-labeled tetrapeptide derived from the amino acid sequence of p53, a known substrate of hSIRT1. The Fmoc group at the N-terminus resulting from solid-phase peptide synthesis enabled deep UV laser-induced fluorescence detection with excitation at 266 nm. The enzymatic reaction of 0.1 U/μL hSIRT1 was carried out within the serpentine micromixer using a 400 μM solution of the peptide in buffer. In order to reduce protein adsorption, the reaction channel was dynamically coated with hydroxypropylmethyl cellulose. The substrate and the deacetylated product were separated by microchip electrophoresis on the same chip. The approach was successfully utilized to screen various SIRT inhibitors.  相似文献   

6.
Methenolone acetate (17β-acetoxy-1-methyl-5α-androst-1-en-3-one), a synthetic anabolic steroid, is frequently abused in human sports. It is preferred for its therapeutic efficiency and lower hepatic toxicity compared with its 17α-alkylated analogs. As with other anabolic steroids, methenolone acetate may be used to enhance performance in racehorses. Metabolic studies on methenolone acetate have been reported for humans, whereas little is known about its metabolic fate in horses. This paper describes the investigation of in vitro and in vivo metabolism of methenolone acetate in racehorses.Studies on the in vitro biotransformation of methenolone acetate with horse liver microsomes were carried out. Methenolone (M1, 1-methyl-5α-androst-1-en-17β-ol-3-one) and seven other metabolites (M2-M8) were detected in vitro. They were 1-methyl-5α-androst-1-ene-3,17-dione (M2), 1-methyl-5α-androst-1-en-6-ol-3,17-dione (M3) and two stereoisomers of 1-methylen-5α-androstan-2-ol-3,17-dione (M4 and M5), 1-methyl-5α-androst-1-en-16-ol-3,17-dione (M6) and monohydroxylated 1-methyl-5α-androst-1-en-17-ol-3-one (M7 and M8). After oral administration of Primobolan® (80 tablets × 5 mg of methenolone acetate each) to two thoroughbred geldings, the parent steroid ester was not detected in the post-administration urine samples. However, seven metabolites, namely M1, M6-M8, two stereoisomers of M7 (M9 and M10) and 1-methyl-5α-androst-1-en-17α-ol-3-one (M11), could be detected. The metabolic pathway for methenolone acetate is postulated. This study has shown that metabolite M1 could be targeted for controlling the abuse of methenolone acetate in horses.  相似文献   

7.
本文报告了利用磷试剂制备2-氧代-3-甲基-3-异丙基-3H-咪唑并[2,1-a]-1-氧代-异吲哚及其异构体3-氧代-2-甲基-2-异丙基-2H-咪唑并[2,1-a]-1-氧代-异吲哚和2-[4,5-二氢化-4-甲基-4-异丙基-5-氧代-1H-咪唑啉-2-基]-N,N-二烷基-苯甲酰胺的新方法。本文方法具有反应条件温和、反应时间较短和收率较高等特点。  相似文献   

8.
The previous discoveries of butyl fenbufen amide analogs with antitumor effects were further examined. The amide analogs with 1, 3, 4 and 8 carbons chains were prepared in 70-80% yield. Fenbufen had no cytotoxic effects at concentrations ranging from 10 to 100 μM. Methyl fenbufen amide had significant cytotoxic effects at a concentration of 100 μM. As the length of the alkyl amide side chain increased, the cytotoxic effects increased, and the octyl fenbufen amide had the greatest cytotoxic effect. After treatment with 30 μM octyl fenbufen amide, nearly seventy percent of the cells lost their viability. At the concentration of 10 μM, fenbufen amide analogs did not show cytotoxicity according to the MTT assay results. The NO scavenging activities of the fenbufen amide analogs were not significantly different from those of fenbufen.  相似文献   

9.
The demand for practical and convenient enzyme assays for histone lysine methyltransferases (HKMTs) emerges along with the rapid development of this young class of enzymes. A supramolecular reporter pair composed of p‐sulfonatocalix[4]arene (CX4) and the fluorescent dye lucigenin (LCG) has been used to monitor enzymatic trimethylation of lysine residues in peptide substrates. The assay affords a switch‐ON fluorescence response and operates in a continuous, real‐time, and label‐free fashion. The underlying working principle relies on the higher affinity of the macrocycle towards the trimethylated product of the enzymatic reaction as compared to the substrate, which allows the assay to be carried out in the product‐selective mode. The final product incorporates a trimethylammonium moiety, a known high‐affinity binding motif for CX4. Two substrates corresponding to the H3 N‐terminal tail, namely, S2 (RTKQTA RKSTG GKAP) and S6 (QTA RKSTG GS), were selected as model compounds for methylation with the Neurospora crassa Dim‐5 enzyme and investigated by the newly developed supramolecular tandem HKMTs assay. Only the longer substrate S2 underwent methylation in solution. The potential of the assay for inhibitor screening was demonstrated by means of inhibition studies with 1,10‐phenanthroline to afford an inhibition constant of (70±20) μM .  相似文献   

10.
The methanol crude extract of the leaves of Ficus radicans Roxb. 'Variegata' (Moraceae) and the n-hexane, ethyl acetate and aqueous methanol fractions resulting from its fractionation were evaluated for their anti-inflammatory, molluscicidal and free-radical scavenging activities. The crude extract and fractions exhibited significant inhibition of inflammation in both croton oil (CO)-induced ear oedema in mice (p<0.001) and carrageenan-induced rat paw oedema models (p<0.01). The molluscicidal assay against Biomphalaria glabrata showed a weak activity for the n-hexane fraction (DL(50)=?400 μg mL(-1)). A moderated 1,1-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging activity was observed for the ethyl acetate fraction (IC(50)=?66.2 μg mL(-1)). Fractionation of the extracts through chromatographic methods afforded the coumarins 7-methoxycoumarin, 7-hydroxy-6-methoxycoumarin and methoxy-3,4-dihydrocoumarin, the steroids β-sitosterol and β-sitosterol 3-O-β-glucopyranoside, as well as a cinnamic acid derivative and a flavonoid identified as trans-4-methoxy-2-β-D-glucopyranosyloxy cinnamic acid and quercetin 3-O-β-D-xylopyranosyl-(1?→?2)-α-L-rhamnopyranoside, respectively. The compounds were identified on the basis of their NMR spectral data and comparison with those previously reported in the literature.  相似文献   

11.
The asymmetric syntheses of the N-terminal α-hydroxy-β-amino acid components of microginins 612, 646 and 680 are reported. Conjugate addition of lithium (R)-N-benzyl-N-(α-methylbenzyl)amide to the requisite (E)-α,β-unsaturated ester followed by in situ enolate oxidation with (?)-(camphorsulfonyl)oxaziridne (CSO) gave the corresponding anti-α-hydroxy-β-amino esters. Sequential Swern oxidation followed by diastereoselective reduction gave the corresponding syn-α-hydroxy-β-amino esters. Subsequent N-debenzylation (i.e., hydrogenolysis for microginin 612, and NaBrO3-mediated oxidative N-debenzylation for microginins 646 and 680) followed by acid catalysed ester hydrolysis gave the corresponding syn-α-hydroxy-β-amino acids, the N-terminal components of microginins 612, 646 and 680, in good yield. An analogous strategy for elaboration of the enantiopure anti-α-hydroxy-β-amino esters facilitated the asymmetric synthesis of the corresponding C(2)-epimeric α-hydroxy-β-amino acids.  相似文献   

12.
Many medically important biofilm forming bacteria produce similar polysaccharide intercellular adhesins (PIA) consisting of partially de-N-acetylated β-(1 → 6)-N-acetylglucosamine polymers (dPNAG). In Escherichia coli, de-N-acetylation of the β-(1 → 6)-N-acetylglucosamine polymer (PNAG) is catalysed by the carbohydrate esterase family 4 deacetylase PgaB. The de-N-acetylation of PNAG is essential for productive PNAG-dependent biofilm formation. Here, we describe the development of a fluorogenic assay to monitor PgaB activity in vitro and the synthesis of a series of PgaB inhibitors. The synthesized inhibitors consist of a metal chelating functional group on a glucosamine scaffold to target the active site metal ion of PgaB. Optimal inhibition was observed with N-thioglycolyl amide (K(i) = 480 μM) and N-methyl-N-glycolyl amide (K(i) = 320 μM) glucosamine derivatives. A chemoenzymatic synthesis of an N-thioglycolyl amide PNAG pentasaccharide led to an inhibitor with an improved K(i) of 280 μM.  相似文献   

13.
2-Methyl-1,4-naphthoquinone derivatives containing 3-[N-(ω-mercaptoalkyl)alkanamide] chains were synthesized from ω-bromoalkylamine salts of 2-methyl-3-carboxyalkyl-1,4-naphthoquinones in the presence of N,N′-dicyclohexylcarbodiimide at ambient temperature, and then transformed into the corresponding mercapto derivatives. Their self-assembling and electrochemical properties on gold were studied. The influence of an intrachain amide group on the structure and electron transfer properties of self-assembled monolayers were evaluated by comparison with analogous ester and alkyl chain-containing 2-methyl-1,4-naphthoquinones.  相似文献   

14.
Conjugate addition of lithium (S)-N-allyl-N-(α-methyl-p-methoxybenzyl)amide to methyl (E,E)-hepta-2,5-dienoate furnished the corresponding β-amino ester. N-Protecting group manipulation, ring-closing metathesis, and ester hydrolysis gave enantiopure [N(1')-tert-butoxycarbonyl-1,2,3,6-tetrahydropyridin-2'-yl]ethanoic acid. Subsequent iodolactonization gave a bicyclic iodolactone scaffold. This key intermediate was elaborated to (+)-pseudodistomin D [in >99% ee and 7% yield over 16 steps from methyl (E,E)-hepta-2,5-dienoate].  相似文献   

15.
D-Serine is a co-agonist of the N-methyl-D-aspartate receptor in glutamate neurotransmission and has been proposed as a potential therapeutic agent for schizophrenia. However, D-serine also acts as a nephrotoxic substance in rats at high doses. To investigate the pharmacokinetics and toxicokinetics of D-serine, a method for the stereoselective determination of serine enantiomers in rat plasma was developed using GC-MS with selected ion monitoring (GC-MS-SIM). DL-[(2)H(3)]Serine was used as an internal standard to account for losses associated with the extraction, derivatization and chromatography. Serine enantiomers were purified by cation-exchange chromatography using BondElut SCX cartridge and derivatized with HCl in methanol to form methyl ester followed by subsequent N,O-diacylation with optically active (+)-α-methoxy-α-trifluoromethylphenylacetyl chloride to form epimeric amide. Quantitation was performed by SIM of the molecular-related ions of the epimers in the chemical ionization mode. The intra- and inter-day reproducibility of the assay was less than 5% for D-serine and 3% for L-serine. The method was successively applied to study the pharmacokinetics of D-serine in rats.  相似文献   

16.
Previously, stereoselective hydroxylation of α-ionone by Cytochrome P450 BM3 mutants M01 A82W and M11 L437N was observed. While both mutants hydroxylate α-ionone in a regioselective manner at the C3 position, M01 A82W catalyzes formation of trans-3-OH-α-ionone products whereas M11 L437N exhibits opposite stereoselectivity, producing trans-(3S,6S)-OH-α-ionone and cis-(3S,6R)-OH-α-ionone. Here, we explore the stereoselective C3 hydroxylation of α-ionone by Cytochrome P450 BM3 mutants M01 A82W and M11 L437N using molecular dynamics-based free energy calculations to study the interaction between the enzyme and both the substrates and the products. The one-step perturbation approach is applied using an optimized reference state for substrates and products. While the free energy differences between the substrates free in solution amount to ~0 kJ mol(-1), the differences in mutant M01 A82W agree with the experimentally obtained dissociation constants K(d). Moreover, a correlation with experimentally observed trends in product formation is found in both mutants. The trans isomers show the most favorable relative binding free energy in the range of all four possible hydroxylated diastereomers for mutant M01 A82W, while the trans product from (6S)-α-ionone and the cis product from (6R)-α-ionone show highest affinity for mutant M11 L437N. Marcus theory is subsequently used to relate the thermodynamic stability to transition state energies and rates of formation.  相似文献   

17.
The diastereoisomeric (+)-[1,8-14C]-(1'R,6R, S)-α-bisabolol ( 2a ) and (?)-[1,8-14C]-(1′S, 6R, S)-α-bisabolol ( 2b ) were synthesized by reaction of the Grignard compound of [1,6-14C]-5-bromo-2-methyl-2-pentene ( 12 ) with (+)-(R)- and (?)-(S)-4-acetyl-1-methyl-1-cyclohexene, ( 6a ) and ( 6b ) respectively. For the preparation of compound 12, cyclopropyl methyl ketone was treated with [14C]-methyl magnesium iodide to form the carbinol 11, which was cleaved by HBr. Compounds 6a and 6b were synthesized from (+)-(R)- and (?)-(S)-limonene, ( 4a ) and ( 4b ), via the derivatives 5a , 6a and 5b , 6b respectively. - This synthesis established the absolute configuration at C(1′) of the natural α-bisabolols: (R) for (+)-α-bisabolol and (S) for (?)-α-bisabolol. - Feeding experiments with cultures of Myrothecium roridum and radioactive (+)-(1′R, 6R, S)- and (?)-(1′S, 6R, S)-α-bisabolol ( 2a ) and ( 2b ) gave negative results. These findings indicate that bisabolane derivatives are not intermediates in the biosynthesis of verrucarol (3).  相似文献   

18.
A simultaneous micro-determination of nicotinamide and its major metabolites, N1-methyl-2-pyridone-5-carboxamide (2-py) and N1-methyl-4-pyridone-3-carboxamide (4-py) by high-performance liquid chromatography is described. The method employs a 7-ODS-L (250 mm X 4.6 mm I.D., particle size 7 microns) column eluted with 10 mM potassium dihydrogenphosphate-acetonitrile (96:4, v/v; pH adjusted to 3.0 by the addition of concentrated phosphoric acid) at a flow-rate of 1.0 ml/min. The UV detector was set at 260 nm. The detection limits for nicotinamide, 2-py and 4-py were 10 pmol (1.22 ng), 2 pmol (304 pg) and 2 pmol (304 pg), respectively, at a signal-to-noise ratio 5:1. Isonicotinamide was used as an internal standard. The technique was applied to the analysis of rat and human urines. The total analysis time was ca. 15 min.  相似文献   

19.
Mesterolone (1α-methyl-5α-androstan-17β-ol-3-one) is a synthetic anabolic androgenic steroid (AAS) with reported abuses in human sports. As for other AAS, mesterolone is also a potential doping agent in equine sports. Metabolic studies on mesterolone have been reported for humans, whereas little is known about its metabolic fate in horses. This paper describes the studies of both the in vitro and in vivo metabolism of mesterolone in racehorses with an objective to identify the most appropriate target metabolites for detecting mesterolone administration.In vitro biotransformation studies of mesterolone were performed by incubating the steroid with horse liver microsomes. Metabolites in the incubation mixture were isolated by liquid-liquid extraction and analysed by gas chromatography-mass spectrometry (GC-MS) after acylation or silylation. Five metabolites (M1-M5) were detected. They were 1α-methyl-5α-androstan-3α-ol-17-one (M1), 1α-methyl-5α-androstan-3β-ol-17-one (M2), 1α-methyl-5α-androstane-3α,17β-diol (M3), 1α-methyl-5α-androstane-3β,17β-diol (M4), and 1α-methyl-5α-androstane-3,17-dione (M5). Of these in vitro metabolites, M1, M3, M4 and M5 were confirmed using authentic reference standards. M2 was tentatively identified by mass spectral comparison to M1.For the in vivo metabolic studies, Proviron® (20 tablets × 25 mg of mesterolone) was administered orally to two thoroughbred geldings. Pre- and post-administration urine samples were collected for analysis. Free and conjugated metabolites were isolated using solid-phase extraction and analysed by GC-MS as described for the in vitro studies. The results revealed that mesterolone was extensively metabolised and the parent drug was not detected in urine. Three metabolites detected in the in vitro studies, namely M1, M2 and M4, were also detected in post-administration urine samples. In addition, two stereoisomers each of 1α-methyl-5α-androstane-3,17α-diol (M6 and M7) and 1α-methyl-5α-androstane-3,16-diol-17-one (M8 and M9), and an 18-hydroxylated metabolite 1α-methyl-5α-androstane-3,18-diol-17-one (M10) were also detected. The metabolic pathway for mesterolone is postulated. These studies have shown that metabolites M8, M9 and M10 could be used as potential screening targets for controlling the misuse of mesterolone in horses.  相似文献   

20.
Racemic and enantiomerically pure manno‐configured isoquinuclidines were synthesized and tested as glycosidase inhibitors. The racemic key isoquinuclidine intermediate was prepared in high yield by a cycloaddition (tandem Michael addition/aldolisation) of the 3‐hydroxy‐1‐tosyl‐pyridone 10 to methyl acrylate, and transformed to the racemic N‐benzyl manno‐isoquinuclidine 2 and the N‐unsubstituted manno‐isoquinuclidine 3 (twelve steps; ca. 11% from 10 ). Catalysis by quinine of the analogous cycloaddition of 10 to (?)‐8‐phenylmenthyl acrylate provided a single diastereoisomer in high yield, which was transformed to the desired enantiomerically pure D ‐manno‐isoquinuclidines (+)‐ 2 and (+)‐ 3 (twelve steps; 23% from 10 ). The enantiomers (?)‐ 2 and (?)‐ 3 were prepared by using a quinidine‐promoted cycloaddition of 10 to the enantiomeric (+)‐8‐phenylmenthyl acrylate. The N‐benzyl D ‐manno‐isoquinuclidine (+)‐ 2 is a selective and slow inhibitor of snail β‐mannosidase. Its inhibition strength and type depends on the pH (at pH 4.5: Ki=1.0 μM , mixed type, α=1.9; at pH 5.5: Ki=0.63 μM , mixed type, α=17). The N‐unsubstituted D ‐manno‐isoquinuclidine (+)‐ 3 is a poor inhibitor. Its inhibition strength and type also depend on the pH (at pH 4.5: Ki=1.2?103 μM , mixed type, α=1.1; at pH 5.5: Ki=0.25?103 μM , mixed type, α=11). The enantiomeric N‐benzyl L ‐manno‐isoquinuclidine (?)‐ 2 is a good inhibitor of snail β‐mannosidase, albeit noncompetitive (at pH 4.5: Ki=69 μM ). The N‐unsubstituted isoquinuclidine (?)‐ 2 is a poor inhibitor (at pH 4.5: IC50=7.3?103 μM ). A comparison of the inhibition by the pure manno‐isoquinuclidines (+)‐ 2 and (+)‐ 3 , (+)‐ 2 /(?)‐ 2 1 : 1, and (+)‐ 3 /(?)‐ 3 1 : 1 with the published data for racemic 2 and 3 led to a rectification of the published data. The inhibition of snail β‐mannosidase by the isoquinuclidines 2 and 3 suggests that the hydrolysis of β‐D ‐mannopyranosides by snail β‐mannosidase proceeds via a distorted conformer, in agreement with the principle of stereoelectronic control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号