首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

2.
Huck CW  Stecher G  Scherz H  Bonn G 《Electrophoresis》2005,26(7-8):1319-1333
This review summarizes the use of capillary electrophoresis (CE) coupled to mass spectrometry (MS) for the analysis of phenolic compounds and its latest developments. Special attention is paid to the different interfaces. The instrumental setups are discussed and demonstrated in a high number of real applications.  相似文献   

3.
The hyphenation of capillary electrophoresis and mass spectrometry (CE/MS) remains a minor technique compared with liquid chromatography/mass spectrometry (LC/MS), which represents nowadays the standard instrumentation, regardless of its introduction thirty years ago. However, from a theoretical point of view, CE coupling should be quite favorable especially with electrospray ionization mass spectrometry (ESI‐MS). At the time, the sensitivity provided by CE/MS was often limited, due to hyphenation requirements, which at some point appeared to disqualify CE/MS from benefiting from the performance gain driving the evolution of MS instruments. However, this context has been significantly modified in a matter of a few years. The development of innovative CE/MS interfacing systems has enabled an important improvement regarding sensitivity and reinforced robustness in order to provide an instrumentation accessible to the largest scientific community. Because of the unique selectivity delivered by the electrophoretic separation, CE/MS has proved to be particularly relevant for the analysis of biological molecules. The conjunction of these aspects is motivating the interest in CE/MS analysis and shows that CE/MS is mature enough to enrich the toolbox of analytical techniques for the analysis of complex biological samples. Here we discuss the characteristics of the major types of high‐sensitivity CE/ESI‐MS instrumentation and emphasize the late evolution and future positioning of CE/MS analysis for the characterization of biological molecules like peptides and proteins, through some pertinent applications.  相似文献   

4.
Application of capillary electrophoresis (CE) as a high-resolution separation technique in metalloproteomics research is critically reviewed. The focus is on the requirements and challenges involved in coupling CE to sensitive element and molecule-specific detection techniques such as inductively coupled plasma mass spectrometry (ICP–MS) or electrospray ionisation mass spectrometry (ESI–MS). The complementary application of both detection techniques to the structural and functional characterisation of metal-binding proteins and their structural metal-binding moieties is emphasised. Beneficial aspects and limitations of mass spectrometry hyphenated to CE are discussed, on the basis of the literature published in this field over the last decade. Recent metalloproteomics applications of CE are reviewed to demonstrate its potential and limitations in modern biochemical speciation analysis and to indicate future directions of this technique.  相似文献   

5.
The efficient profiling of highly polar and charged metabolites in biological samples remains a huge analytical challenge in metabolomics. Over the last decade, new analytical techniques have been developed for the selective and sensitive analysis of polar ionogenic compounds in various matrices. Still, the analysis of such compounds, notably for acidic ionogenic metabolites, remains a challenging endeavor, even more when the available sample size becomes an issue for the total analytical workflow. In this paper, we give an overview of the possibilities of capillary electrophoresis‐mass spectrometry (CE–MS) for anionic metabolic profiling by focusing on main methodological developments. Attention is paid to the development of improved separation conditions and new interfacing designs in CE–MS for anionic metabolic profiling. A complete overview of all CE–MS‐based methods developed for this purpose is provided in table format (Table 1) which includes information on sample type, separation conditions, mass analyzer and limits of detection (LODs). Selected applications are discussed to show the utility of CE–MS for anionic metabolic profiling, especially for small‐volume biological samples. On the basis of the examination of the reported literature in this specific field, we conclude that there is still room for the design of a highly sensitive and reliable CE–MS method for anionic metabolic profiling. A rigorous validation and the availability of standard operating procedures would be highly favorable in order to make CE–MS an alternative, viable analytical technique for metabolomics.  相似文献   

6.
Recent developments in the coupling of highly selective separation techniques such as capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) to element-specific and molecule-specific detectors, such as inductively-coupled plasma mass spectrometry (ICP-MS) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS) for the characterization and quantification of metallothioneins (MTs) are critically reviewed and discussed. This review gives an update based on the literature over the last five years. The coupling of CE to ICP-MS is especially highlighted. As a result of progress in new interface technologies for CE-ICP-MS, research topics presented in the literature are changing from "the characterization of interfaces by metallothioneins" to the "characterization of metallothioneins by CE-ICP-MS". New applications of CE-ICP-MS to the analysis of MTs in real samples are summarized. The potential of the on-line isotope dilution technique for the quantification of MTs and for the determination of the stoichiometric composition of metalloprotein complexes is discussed. Furthermore, a selection of relevant papers dealing with HPLC-ICP-MS for MT analysis are summarized and compared to those dealing with CE-ICP-MS. In particular, the use of size-exclusion (SE)-HPLC as a preliminary separation step for metallothioneins in real samples prior to further chromatographic or electrophoretic separations is considered. Additionally, the application of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) for the identification of metallothionein isoforms following electrophoretic or chromatographic separation is discussed.  相似文献   

7.
This article provides a review of the use of modern mass spectrometry (MS) for quantitative and qualitative measurements of organic phosphorus compounds in nature. Included is a brief discussion of recent developments in large molecule mass spectrometry, focusing on time-of-flight (TOF) and ion cyclotron resonance (ICR) mass analysis techniques, as well as electrospray (ESI) and inductively coupled plasma (ICP) ionization. The use of ICP with high-resolution mass spectrometry for quantitative measurements of total phosphorus and as a detector coupled to HPLC and CE for defining organic phosphorus speciation is demonstrated using results from a study of phosphorus cycling in a treatment wetland. Qualitative identifications of individual phosphorus compounds by ultrahigh resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is demonstrated using dissolved organic phosphorus isolated from this same wetland.  相似文献   

8.
9.
The rapid development of nanotechnology has revolutionized scientific developments in recent decades. Mass spectrometry (MS) measurements are no exception and have benefited greatly from integration of nanomaterials in every step of analysis. This brief review summarizes recent developments in the field with the focus on the use of nanomaterials as alternative media to facilitate analyte ionization in laser-desorption ionization–mass spectrometry (LDI–MS) and secondary ion mass spectrometry (SIMS). The biological applications of both techniques are also detailed. The use of nanomaterials in other aspects of MS analysis, for example in sample clean-up and indirect analyte quantification, is briefly discussed.  相似文献   

10.
Capillary electrophoresis combined with mass spectrometry (CE‐MS) has been used for several years for the investigation of proteins and peptides as biomarkers for diagnosis and prognosis of diseases. In addition, the technology has recently been introduced to support the stratification of patients in clinical trials and in large clinical studies. In this review, we aim at presenting the development of CE‐MS over the last 20 years, by focusing on the clinical potential of proteome and peptidome analysis and highlighting some of the key technical issues and advancements that have been made in this context towards implementation. Based on the reviewed literature, it has become evident that CE‐MS is now an accepted tool in clinical application in several disease areas. Apart from a critical overview on the current state‐of‐the‐art in CE‐MS, we also indicate the expected developments for potential future use.  相似文献   

11.
The increasing interest in the development of glycoproteins for therapeutic purposes has created a greater demand for methods to characterize the sugar moieties bound to them. Traditionally, released carbohydrates are derivatized using such methods as permethylation or fluorescent tagging prior to analysis by high performance liquid chromatography (HPLC), capillary electrophoresis (CE), or direct infusion mass spectrometry. However, little research has been performed using CE with on-line mass spectrometry (MS) detection. The CE separation of neutral oligosaccharides requires the covalent attachment of a charged species for electrophoretic migration. Among charged labels which have shown promise in assisting CE and HPLC separation is the fluorophore 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS). This report describes the qualitative profiling of charged ANTS-derivatized and underivatized complex glycans by CE with on-line electrospray ion trap mass spectrometry. Several neutral standard glycans including a maltooligosaccharide ladder were derivatized with ANTS and subjected to CE/UV and CE/MS using low pH buffers consisting of citric and 6-aminocaproic acid salts. The ANTS-derivatized species were detected as negative ions, and multiple stage MS analysis provided valuable structural information. Fragment ions were easily identified, showing promise for the identification of unknowns. N-Linked glycans released from bovine fetuin were used to demonstrate the applicability of ANTS derivatization followed by CE/MS for the analysis of negatively charged glycans. Analyses were performed on both underivatized and ANTS-derivatized species, and sialylated glycans were separated and detected in both forms. The ability of the ion trap mass spectrometer to perform multiple stage analysis was exploited, with MS5 information obtained on selected glycans. This technique presents a complementary method to existing methodologies for the profiling of glycan mixtures.  相似文献   

12.
Capillary electrophoresis (CE) is a powerful separation tool for non-targeted analysis of chemically complex samples, such as blood, urine, and tissue. However, traditionally CE requires samples in solution for analysis, which limits information on analyte distribution and heterogeneity in tissue. The recent development of surface sampling CE–mass spectrometry (SS-CE–MS) brings these advantages of CE to solid samples and enables chemical mapping directly from the tissue surface without laborious sample preparation. Here, we describe developments of SS-CE–MS to increase reproducibility and stability for metabolite, lipid, and protein extraction from tissue sections and dried blood spots. Additionally, we report the first electrokinetic sequential sample injection for high throughput analysis. We foresee that the wide molecular coverage from a distinct tissue region in combination with higher throughput will provide novel information on biological function and dysfunction.  相似文献   

13.
A centralized approach to acquisition and dissemination of tandem mass spectrometry (MS/MS) conditions within an ADME-screening bioanalytical mass spectrometry group has been developed. The method development process uses two automated software products (Autoscan and Automaton) specifically designed for mass spectrometers manufactured by MDS Sciex. Both provide the ability to quickly determine selected reaction monitoring (SRM) transitions for hundreds of compounds per day. In addition, Autoscan determines optimal polarity and collision energy (CE). Automaton also determines the optimal declustering potential (DP) as well as the CE. The resulting optimized conditions are loaded into a central database for access by LC/MS/MS bioanalysis workstations in the group. The effect of DP and CE on the sensitivity was investigated. Optimization of DP improved signal response about 27% on average. For approximately 10% of compounds, signal enhancement was greater than 50% compared to the generic setting. A generic setting of DP = 25 V can be used for the majority of ADME-screening applications. Optimization of CE can have a much larger impact on signal intensity and a minimum of three CE settings should be tested. We have determined that CE values of 1, 30 and 45 V provide adequate coverage for most small molecule drug discovery analytes.  相似文献   

14.
Capillary electrophoresis (CE) has a significant role in drug discovery and manufacturing processes and has a potential to grow further, due to new developments that can provide highly sensitive and high throughput analysis. This review illustrates recent applications of CE in pharmaceutical analysis (2005-present). The history, principles, instruments, and conventional modes of CE are briefly described. Applications for drug analysis by various techniques of CE are presented in six tables: capillary zone electrophoresis (CZE) (Table I), micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) (Table II), non-aqueous CE (NACE) (Table III), chiral CE (Table IV), CE-mass spectrometry (MS) microchip CE (Table V), and multiplexed CE (MCE) (Table VI).  相似文献   

15.
Since its introduction in 1987, capillary electrophoresis-mass spectrometry (CE-MS) has developed to a well accepted multidimensional analytical approach complementary and/or competitive to classical MS-hyphenated separation techniques. The threefold combination of rapid developments of an exceptional separation technique, of selective mass detection possibilities, and of very mild ionization modes first allowed these progresses. This article shows the CE specificities that need to be well controlled/known, compared to classical and more routinely used liquid chromatography in the light of its coupling to MS. The major trends and developments over the last 15 years and most of the reviews and applications found in ISI Web of science and publisher databases are presented in a tabulated way. The reader can thus rapidly find existing CE-MS analysis techniques in his field of research and application (forensics, environment, bioanalytics, pharmaceutics, and metabolites).  相似文献   

16.
This study was focused on examining the influence of gas flow parameters on capillary electrophoresis/mass spectrometry (CE /MS) performance using sheath-liquid CE /MS interfaces. The effects of nebulizing and drying gas velocity and drying gas temperature on CE separation and MS detection sensitivity were systematically determined. Nebulizing gas velocity was observed to be a critical parameter in the optimization of CE /MS method, since it affected both MS detection sensitivity, and also CE separation efficiency for one interface design tested. Better detection sensitivity was obtained when the nebulizing gas velocity was increased. However, high velocity of the nebulizing gas flow can cause a hydrodynamic bulk flow inside the CE capillary, thus clearly increasing the apparent mobility and decreasing the resolution obtained for the compounds studied. Increasing the drying gas velocity or temperature did not affect the apparent mobility or the separation efficiency and the temperature could be increased to achieve the optimal detection sensitivity in the CE /MS analysis. For comparison, the effects of nebulizing gas flow were studied using a different design of the coaxial sheath-liquid CE /MS interface, and in this case better detection sensitivity but no effect on CE separation efficiency was observed with increased nebulizing gas velocity. These different effects of nebulizing gas flow on the CE bulk flow were concluded to result from pressure differences at the tip of the CE capillaries for the different CE /MS interface arrangements. It is therefore recommended that the cross-sectional dimensions of the fused-silica and steel capillaries, and the gas streamlines, should be optimized when CE /MS interfaces are built. Moreover, the effect of gas flow on CE separation should be studied when optimizing the CE /MS operation parameters.  相似文献   

17.
Capillary separations interfaced to tandem mass spectrometry provide a very powerful tool for the characterization of biological macromolecules such as proteins and peptides. The development of real time data-dependent data acquisition has further enhanced the capability of this method. However, the application of this technique to fast capillary separations has been limited by the relatively slow spectral acquisition speed available on scanning mass spectrometers. In this work, an ion trap storage/reflectron time-of-flight mass spectrometer (IT/reTOF-MS) has been used as an on-line tandem mass detector for capillary high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) separations of peptide mixtures including a protein digest. By taking advantage of the nonscanning property of the time-of-flight mass spectrometer, a fast spectral acquisition rate has been achieved. This fast spectral acquisition rate, combined with a new protocol that speeds up tickle voltage optimization, has provided MS/MS spectra for multiple components in a hemoglobin digest during one liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) run. Further, the IT/reTOF-MS has the speed to provide MS/MS spectra for multiple components in a CE separation of a synthetic peptide mixture within one CE/MS/MS run.  相似文献   

18.
近年来,随着毛细管电泳与质谱、激光诱导荧光检测等联用技术的飞速发展,毛细管电泳技术在生命科学、环境保护、食品检验等领域得到广泛应用.对毛细管内壁进行涂层改性是提高毛细管电泳的分离效果和重现性,抑制分析物与毛细管内壁间吸附作用的最有效、最常用的方法.该文根据涂层材料的种类和制备机理,分别综述了近年来非共价键合和共价键合毛...  相似文献   

19.
魏波  马遥  田文哲  赵新颖  屈锋 《色谱》2021,39(6):559-566
该文为2020年毛细管电泳(capillary electrophoresis,CE)技术年度回顾.归纳总结了以"capillary electro-phoresis-mass spectrometry"或"capillary isoelectric focusing"或"micellar electrokinetic...  相似文献   

20.
Since 1999, substantial research has been devoted to the development of liquid-phase microextraction (LPME) based on porous hollow fibers. With this technology, target analytes are extracted from aqueous samples, through a thin supported liquid membrane (SLM) sustained in the pores in the wall of a porous hollow fiber, and further into a microL volume of acceptor solution placed inside the lumen of the hollow fiber. After extraction, the acceptor solution is directly subjected to a final chemical analysis by liquid chromatography (HPLC), gas chromatography (GC), capillary electrophoresis (CE), or mass spectrometry (MS). In this review, LPME will be discussed with focus on extraction principles, historical development, fundamental theory, and performance. Also, major applications have been compiled, and recent forefront developments will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号