首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Online coupling of capillary electrophoresis (CE) to electrospray ionization mass spectrometry (MS) has shown considerable potential, however, technical challenges have limited its use. In this study, we have developed a simple and sensitive sheathless CE-MS interface based on the novel concept of forming a sub-micrometer fracture directly in the capillary. The simple interface design allowed the generation of a stable ESI spray capable of ionization at low nanoliter flow-rates (45–90 nL/min) for high sensitivity MS analysis of challenging samples like those containing proteins and peptides. By analysis of a model peptide (leucine enkephalin), a limit of detection (LOD) of 0.045 pmol/μL (corresponding to 67 attomol in a sample volume of ∼15 nL) was obtained. The merit of the CE-MS approach was demonstrated by analysis of bovine serum albumin (BSA) tryptic peptides. A well-resolved separation profile was achieved and comparable sequence coverage was obtained by the CE-MS method (73%) compared to a representative UPLC-MS method (77%). The CE-MS interface was subsequently used to analyse a more complex sample of pharmaceutically relevant human proteins including insulin, tissue factor and α-synuclein. Efficient separation and protein ESI mass spectra of adequate quality could be achieved using only a small amount of sample (30 fmol). In addition, analysis of ubiquitin samples under both native and denatured conditions, indicate that the CE-MS setup can facilitate native MS applications to probe the conformational properties of proteins. Thus, the described CE-MS setup should be useful for a wide range of high-sensitivity applications in protein research.  相似文献   

2.
梁玉  张丽华  张玉奎 《色谱》2020,38(10):1117-1124
蛋白质组学研究在生物学、精准医学等方面发挥着重要的作用。然而研究面临的巨大挑战来自生物样品的复杂性,因此在质谱(MS)鉴定技术不断革新的同时,发展分离技术以降低样品复杂度尤为重要。毛细管电泳(CE)技术具有上样体积小、分离效率高、分离速度快等优势,其与质谱的联用在蛋白质组学研究中越来越受到关注。低流速鞘流液和无鞘流液接口的发展及商品化推动了CE-MS技术的发展。目前毛细管区带电泳(CZE)、毛细管等电聚焦(CIEF)、毛细管电色谱(CEC)等分离模式已与质谱联用,其中CZE-MS应用最广泛。目前被广泛采用的蛋白质组学研究策略主要是基于酶解肽段分离鉴定的"自下而上(bottom-up)"策略。首先,CE-MS技术对酶解肽段的检测灵敏度高达1 zmol,已成功应用于单细胞蛋白质组学;其次,毛细管电泳技术与反相液相色谱互补,为疏水性质相近的肽段(尤其是翻译后修饰肽段)的分离鉴定提供了新的途径。基于整体蛋白质分离鉴定的自上而下"top-down"策略可以直接获得更精准、更完整的蛋白质信息。CE技术在蛋白质大分子的分离方面具有分离效率高、回收率高的优势,其与质谱的联用提高了整体蛋白质的鉴定灵敏度和覆盖度。非变性质谱(native MS)是一种在近生理条件下从完整蛋白质复合物水平上进行分析的质谱技术。CE与非变性质谱联用已被尝试用于蛋白质复合体的分离鉴定。该文引用了与CE-MS和蛋白质组学应用相关的93篇文献,综述了以上介绍的CE-MS的研究进展以及在蛋白质组学分析中的应用优势,并总结和展望了其应用前景。  相似文献   

3.
The performance of a prototype porous tip sprayer for sheathless capillary electrophoresis-mass spectrometry (CE-MS) of intact proteins was studied. Capillaries with a porous tip were inserted in a stainless steel needle filled with static conductive liquid and installed in a conventional electrospray ionization (ESI) source. Using a BGE of 100 mM acetic acid (pH 3.1) and a positively charged capillary coating, a highly reproducible and efficient separation of four model proteins (insulin, carbonic anhydrase II, ribonuclease A and lysozyme) was obtained. The protein mass spectra were of good quality allowing reliable mass determination of the proteins and some of their impurities. Sheath-liquid CE-MS using the same porous tip capillary and an isopropanol-water-acetic acid sheath liquid showed slightly lower to similar analyte responses. However, as noise levels increased with sheath-liquid CE-MS, detection limits were improved by a factor 6.5-20 with sheathless CE-MS. The analyte response in sheathless CE-MS could be enhanced using a nanoESI source and adding 5% isopropanol to the BGE, leading to improved detection limits by 50-fold to 140-fold as compared to sheath liquid interfacing using the same capillary - equivalent to sub-nM detection limits for three out of four proteins. Clearly, the sheathless porous tip sprayer provides high sensitivity CE-MS of intact proteins.  相似文献   

4.
On-line capillary electrophoresis (CE) separations are shown for a synthetic peptide mixture and a tryptic digest of human hemoglobin in an uncoated fused-silica capillary with detection using atmospheric pressure ionization mass spectrometry (API-MS). The CE system utilized a 1-m capillary column of either 75- or 100-microns I.D. These somewhat larger inside diameters allow higher sample capacities for MS detection and the 1-m length facilitates connecting the CE column to the liquid junction-ion spray interface and MS system. Low volatile buffer concentrations (15-20 mM) of ammonium acetate or ammonium formate, and high organic modifier content (5-50%) of methanol or acetonitrile facilitates ionization under electrospray conditions. This study shows that peptides separated by CE may be transferred to the API-MS system through a liquid junction coupling to the pneumatically assisted electrospray (ion spray) interface at low buffer pH when the electroosmotic flow is low (0-0.04 microliter/min). CE-MS as described herein is facilitated by features in modern CE instrumentation including robotic cleaning and pressurization of the capillary inlet. The latter is particularly useful for repetitive rinsing and conditioning of the capillary column between analyses in addition to continuous 'infusion' of sample to the mass spectrometer for tuning purposes. In addition to facile molecular weight determination, amino acid sequence information for peptides may be obtained by utilizing on-line tandem MS. After the tryptic digest sample components enter the API-MS system, the molecular ion species of individual peptides may be focussed and transmitted into the collision cell of the tandem triple quadrupole mass spectrometer. Collision-induced dissociation of protonated peptide molecules yielded structural information for their characterization following injection of 10 pmol of a tryptic digest from human hemoglobin.  相似文献   

5.
The verification of the cDNA-deduced sequence of the high molecular weight glutenin subunit 1Bx7 in Chinese Spring cultivar was achieved by direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of the tryptic fragments. The published sequence of the 1Bx7 subunit contains 5 Lys and 15 Arg residues but, due to the presence of three Arg-Pro bonds, which are generally resistant to cleavage by trypsin, or cleaved to a very limited extent by trypsin, 19 peptides can be predicted. The identification of the tryptic fragments was achieved by direct MALDI-MS analysis by using three different matrices (DHB, SA and HCCA) in combination with the most compatible sample preparation procedures in order to obtain the maximum sequence coverage. MALDI analysis of the 1Bx7 tryptic digest resulted in the identification of the expected peptides and additional fragments arising from non-specific cleavages; the fragments that were not detected are peptides with low mass (from 147.2 to 317.4), so we obtained a sequence coverage of 98.8%. The results reported here also indicated that the sequence of the 1Bx7 subunit from cv. Chinese Spring is different from the cDNA-deduced sequence reported in the literature; in particular, a possible insertion of the hexapeptide QPGQGQ within the sequence Gln630-Tyr725 was suggested. Finally, it is possible to rule out glycosylation of the 1Bx7 subunit, or any other post-translational modification, to within the detection limits of the method.  相似文献   

6.
mAbs are highly complex proteins that present a wide range of microheterogeneity that requires multiple analytical methods for full structure assessment and quality control. As a consequence, the characterization of mAbs on different levels is particularly product‐ and time‐consuming. CE‐MS couplings, especially to MALDI, appear really attractive methods for the characterization of biological samples. In this work, we report the last instrumental development and performance of the first totally automated off‐line CE‐UV/MALDI‐MS/MS. This interface is based on the removal of the original UV cell of the CE apparatus, modification of the spotting device geometry, and creation of an integrated delivery matrix system. The performance of the method was evaluated with separation of five intact proteins and a tryptic digest mixture of nine proteins. Intact protein application shows the acquisition of electropherograms with high resolution and high repeatability. In the peptide mapping approach, a total number of 154 unique identified peptides were characterized using MS/MS spectra corresponding to average sequence coverage of 64.1%. Comparison with NanoLC/MALDI‐MS/MS showed complementarity at the peptide level with an increase of 42% when using CE/MALDI‐MS coupling. Finally, this work represents the first analysis of intact mAb charge variants by CZE using an MS detection. Moreover, using a peptide mapping approach CE‐UV/MALDI‐MS/MS fragmentation allowed 100% sequence coverage of the light chain and 92% of the heavy chain, and the separation of four major glycosylated peptides and their structural characterization.  相似文献   

7.
Antibody-drug conjugates (ADCs) represent a fast growing class of biotherapeutic products. Their production leads to a distribution of species exhibiting different number of conjugated drugs overlaying the inherent complexity resulting from the monoclonal antibody format, such as glycoforms. ADCs require an additional level of characterization compared to first generation of biotherapeutics obtained through multiple analytical techniques for complete structure assessment. We report the development of complementary approaches implementing sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) to characterize the different aspects defining the structure of brentuximab vedotin. Native MS using sheathless CE-MS instrument as a nanoESI infusion platform enabled accurate mass measurements and estimation of the average drug to antibody ratio alongside to drug load distribution. Middle-up analysis performed after limited IdeS proteolysis allowed to study independently the light chain, Fab and F(ab')2 subunits incorporating 1, 0 to 4 and 0 to 8 payloads respectively. Finally, a CZE-ESI-MS/MS methodology was developed in order to be compatible with hydrophobic drug composing ADCs. From a single injection, complete sequence coverage could be achieved. Using the same dataset, glycosylation and drug-loaded peptides could be simultaneously identified revealing robust information regarding their respective localization and abundance. Drug-loaded peptide fragmentation mass spectra study demonstrated drug specific fragments reinforcing identification confidence, undescribed so far. Results reveal the method ability to characterize ADCs primary structure in a comprehensive manner while reducing tremendously the number of experiments required. Data generated showed that sheathless CZE-ESI-MS/MS characteristics position the methodology developed as a relevant alternative for comprehensive multilevel characterization of these complex biomolecules.  相似文献   

8.
Liquid chromatography/mass spectrometry (LC/MS) peptide maps have become a basic tool for characterizing proteins of biological and pharmaceutical interest. The ability to generate reproducible maps with high protein sequence coverage is a central goal of methods development. We have applied a recently developed analytical approach (termed LC/MS(E)) to LC/MS peptide mapping. Using the LC/MS(E) approach, the mass detector alternates between a low-energy scanning mode (MS) for accurate mass peptide precursor identification, and an elevated-energy mode (MS(E)) for generation of accurate mass multiplex peptide fragmentation data. In this paper, we evaluate this analytical approach against a tryptic digest of yeast enolase. From the low-energy data, high peptide map coverage (98% of sequence from peptides >3 amino acids) was reproducibly obtained. The MS signal for essentially equimolar peptides varied over 2 orders of magnitude in intensity, and peptide intensities could be precisely and reproducibly measured. Using the temporal constraint that MS(E) peptide fragment ions exhibit chromatographic profiles that parallel the precursor ions that generated them, we were able to produce accurate mass time-resolved MS/MS information for all enolase peptides with sufficient abundance to produce a detectable fragment ion.  相似文献   

9.
Our previous work has demonstrated that reversed-phase chromatographic micro-beads can be used to capture proteins from complex biological matrices and the surface-bound proteins can be enzymatically digested for protein identification by mass spectrometry (MS). Here we examine the peptides generated from digestion of proteins bound to various types of micro-bead surfaces in order to determine the effects of surface chemistry and surface morphology on the digestion process. Detailed examinations of site cleavages and sequence coverage are carried out for a tryptic digestion of cytochrome c adsorbed on reversed-phase polystyrene divinylbenzene (Poros R2 beads) versus C(18) bonded-phase silica beads. It is shown that although the surface does not completely hinder the digestion of cleavage sites of the protein, the digestion products are clearly different than those obtained from a solution digest. Specifically, a partial digestion results from surface digestion, resulting in a greater number of missed cleavages than a comparable solution digest. Subsequent comparisons of peptide mass maps generated from the digestion of various proteins on surfaces with altering chemistry (C(4), C(8), C(18), and R2 beads), or with different surface morphology, were performed. The results reveal that surface chemistry plays only a minor role in affecting the peptide mass maps, and surface morphology had no noticeable effects on the resulting peptide mass maps. It is also shown that the mass spectrometric detection method used to analyze the digested peptides can significantly influence the information content on cleavage sites and the extent of sequence coverage. The use of a combination of MALDI, LC/off-line MALDI, and LC/ESI MS is demonstrated to be crucial in revealing subtle changes in the peptide mass maps.  相似文献   

10.
This paper reports results on the verification of the 1Ax2* high molecular weight glutenin subunit sequence in Cheyenne cultivar. The gene sequence of the protein is known but recently some text changes have been made, and furthermore until now no characterization of post-translational modifications has been reported. The two published sequences, named I and II, differ in four residues at positions 23, 208, 475, and 611. The first sequence contains 20 Arg and 6 Lys residues, producing 26 tryptic fragments, since the Arg(109)-Pro(110) bond is generally not cleaved by trypsin. The second sequence contains 19 Arg and 6 Lys residues, producing 25 tryptic peptides, again because of the Arg(109)-Pro(110) bond. Both sequences generate two cyanogen bromide fragments. Matrix-assisted laser desorption/ionization analysis of the tryptic digest of the high-MW glutenin subunit 1Ax2* resulted in the identification of 24 out of the 26 expected peptides for sequence I, a sequence coverage of 99.5%. These results were sufficient to rule out sequence II and any protein glycosylation and any other post-translational modifications to within the detection limits of the method. It was found that the choice of matrix considerably influenced the sequence coverage in peptide mapping.  相似文献   

11.
Monolithically integrated, polymer (SU-8) microchips comprising an electrophoretic separation unit, a sheath flow interface and an ESI emitter were developed to improve the speed and throughput of proteomics analyses. Validation of the microchip method was performed based on peptide mass fingerprinting and single peptide sequencing of selected protein standards. Rapid, yet reliable identification of four biologically important proteins (cytochrome C, β-lactoglobulin, ovalbumin and BSA) confirmed the applicability of the SU-8 microchips to ambitious proteomic applications and allowed their use in the analysis of human muscle cell lysates. The characteristic tryptic peptides were easily separated with plate numbers approaching 10(6), and with peak widths at half height as low as 0.6 s. The on-chip sheath flow interface was also exploited to the introduction of an internal mass calibrant along with the sheath liquid which enabled accurate mass measurements by high-resolution Q-TOF MS. Additionally, peptide structural characterization and protein identification based on MS/MS fragmentation data of a single tryptic peptide was obtained using an ion trap instrument. Protein sequence coverages exceeding 50% were routinely obtained without any pretreatment of the proteolytic samples and a typical total analysis time from sampling to detection was well below ten minutes. In conclusion, monolithically integrated, dead-volume-free, SU-8 microchips proved to be a promising platform for fast and reliable analysis of complex proteomic samples. Good analytical performance of the microchips was shown by performing both peptide mass fingerprinting of complex cell lysates and protein identification based on single peptide sequencing.  相似文献   

12.
Weak anion-exchange and reversed-phase high-performance liquid chromatographic methods for peptide separations were compared using a tryptic digest of "rat small myelin basic protein". In these experiments, a number of tryptic peptides that were not resolved on the reversed-phase column could be separated on the weak anion-exchange column, and in other instances, as might be expected, reversed-phase chromatography provided better resolution of certain peptides than did the weak anion-exchange method. The results obtained strongly suggest that the combined use of these two methods of separation, which utilize different selectivities, can provide an excellent improvement in resolving power for a number of peptide separations.  相似文献   

13.
Larsson M  Lutz ES 《Electrophoresis》2000,21(14):2859-2865
Transient isotachophoresic (ITP) focusing was used for the on-line analysis of peptides by capillary zone electrophoresis-mass spectrometry (CZE-MS), allowing injection volumes of up to 0.9 microL. A sheath liquid electrospray interface was used with a single quadrupole mass analyzer. First, the technique was applied to the qualitative analysis of a tryptic digest of cytochrome c, resulting in low-background, high-quality spectra. Second, the linear range was investigated by selected ion monitoring (SIM) for a peptidomimetic direct thrombin inhibitor melagatran (Mr 429.5) and two endogenous peptides, substance P (Mr 1348) and calcitonin gene-related peptide (alpha-CGRP; Mr 3806).  相似文献   

14.
The potential of capillaries noncovalently coated with a bilayer of oppositely charged polymers for the analysis of peptides by CE-MS was investigated. Bilayer coatings were produced by subsequently rinsing fused-silica capillaries with a solution of Polybrene (PB) and poly(vinyl sulfonate) (PVS). The PB-PVS coating showed to be fully compatible with MS detection causing no ionization suppression or background signals. The bilayer coating provided a considerable EOF at low pH, thereby facilitating the fast separation of peptides using a BGE of formic acid (pH 2.5). Under optimized CE-MS conditions, for enkephalin peptides high separation efficiencies were obtained with plate numbers in the range of 300,000-500,000. It is demonstrated that both the cancellation of the hydrodynamic capillary flow induced by the nebulizer gas and a sufficiently high-data acquisition rate are crucial for achieving these efficiencies. The overall performance of the CE-MS system using PB-PVS-coated capillaries was evaluated by the analysis of a tryptic digest of cytochrome c. The system provided an efficient separation of the peptide mixture, which could be effectively monitored by MS/MS detection allowing identification of at least 13 peptides within a time interval of 1.5 min. In addition, the PB-PVS coating proved to be very consistent yielding stable CE-MS patterns with highly favorable migration time reproducibilities (RSDs < 1% over a 3-day period).  相似文献   

15.
Electron capture dissociation (ECD) offers many advantages over the more traditional fragmentation techniques for the analysis of peptides and proteins, although the question remains: How suitable is ECD for incorporation within proteomic strategies for the identification of proteins? Here, we compare LC-ECD-MS/MS and LC-CID-MS/MS as techniques for the identification of proteins. Experiments were performed on a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer. Replicate analyses of a six-protein (bovine serum albumin, apo-transferrin, lysozyme, cytochrome c, alcohol dehydrogenase, and β-galactosidase) tryptic digest were performed and the results analyzed on the basis of overall protein sequence coverage and sequence tag lengths within individual peptides. The results show that although protein coverage was lower for LC-ECD-MS/MS than for LC-CID-MS/MS, LC-ECD-MS/MS resulted in longer peptide sequence tags, providing greater confidence in protein assignment.  相似文献   

16.
A generic approach has been developed for coupling capillary electrophoresis (CE) using non-volatile background electrolytes (BGEs) with mass spectrometry (MS) using a sheath liquid interface. CE-MS has been applied for basic and bi-functional compounds using a BGE consisting of 100 mM of TRIS adjusted to pH 2.5 using phosphoric acid. A liquid sheath effect is observed which may influence the CZE separation and hence may complicate the correlation between CE-UV and CE-MS methods. The influence of the liquid sheath effect on the migration behavior of basic pharmaceuticals has been studied by simulation experiments, in which the BGE outlet vial is replaced by sheath liquid in a CE-UV experiment. As a consequence of the liquid sheath effect, phosphate based BGEs can be used without significant loss of MS sensitivity compared to volatile BGEs. The use of buffer constituents such as TRIS can lead to lower detection limits as loss of MS sensitivity can be compensated by better CE performance. TRIS based BGEs permit relatively high injection amounts of about 100 pmol while maintaining high resolution. The ESI-MS parameters were optimized for a generic method with maximum sensitivity and stable operation, in which the composition of the sheath liquid and the position of the capillary were found to be important. Furthermore, the nebulizing pressure strongly influenced the separation efficiency. The system showed stable performance for several days and a reproducibility of about 15% RSD in peak area has been obtained. Nearly all test compounds used in this study could be analyzed with an MS detection limit of 0.05% measured in scan mode using extracted ion chromatograms. As a result, CE-MS was found to be a valuable analytical tool for pharmaceutical impurity profiling.  相似文献   

17.
Microfluidic interfaces coupled to ESI mass spectrometers hold great potential for proteomics as they have been shown to augment the overall sensitivity of measurements and require only a minimum of operator manipulations as compared to conventional nano-LC interfaces. Here, we evaluated a new type of HPLC-Chips holding larger enrichment columns (thus an increased sample loading capacity) for gel-free proteome studies. A tryptic digest of a human T-cell proteome was fractionated by strong cation exchange chromatography and selected fractions were analyzed by MS/MS on an IT mass spectrometer using both the new HPLC-Chip as well as a conventional nano-LC-MS/MS interface. Our results indicate that the HPLC-Chip is capable of handling very complex peptide mixtures and, in fact, leads to the identification of more peptides and proteins as compared to when a conventional interface was used. The HPLC-Chip preferentially produced doubly charged tryptic peptides. We further show that MS/MS spectra of doubly charged tryptic peptide ions are more readily identified by MASCOT as compared to those from triply charged precursors and thus argue that besides the improved chromatographic conditions provided by the HPLC-Chip, its peptide charging profile might be a secondary factor leading to an increased proteome coverage.  相似文献   

18.
Vitellogenin (VTG) is a protein produced by the liver of oviparous animals in response to circulating estrogens. In the plasma of males and immature females, VTG is undetectable. VTG has been used as a biomarker for exposure to endocrine disruptors in many species. In the present study, characterization of intact Atlantic salmon VTG was effected using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI ToF MS). Tryptic digest peptides were analyzed by MALDI ToF MS to obtain a peptide mass fingerprint. De novo sequencing of the tryptic peptides used low-energy collisionally-induced dissociation (CID) in an electrospray ionization quadrupole-ToF orthogonal hybrid mass spectrometer (ESI Q-ToF MS/MS). The interpretation of the product-ion spectra obtained from the ESI Q-ToF MS/MS was done by Lutefisk, a computer-based software algorithm. The molecular mass of the intact protein was found to be 187335 Da. A total of 14 tryptic peptides were sequenced and compared with the complete rainbow trout VTG and the partial Atlantic salmon VTG sequences found in the Swiss-Prot database. De novo sequencing by CID MS/MS of 11 Atlantic salmon tryptic digest peptides with selected precursor ions at m/z 788.24, 700.20, 794.75, 834.31, 889.28, 819.79, 865.27, 843.81, 572.20, 573.66 and 561.68 showed high homology with the known sequence of rainbow trout VTG. The last two precursor peptide ions, found at m/z 573.66 and m/z 561.68, also specifically matched the known portion of the Atlantic salmon VTG sequence. Finally, three tryptic precursor peptide ions found at m/z 795.18, 893.28 and 791.05, provided product-ion spectra, which were exclusive to the unsequenced portion of the Atlantic salmon VTG.  相似文献   

19.
The atmospheric-pressure matrix-assisted laser desorption/ionisation quadrupole ion trap (AP-MALDI-QIT) analysis of tryptic peptides is reported following capillary liquid chromatographic (LC) separation and direct analysis of a protein digest. Peptide fragments were identified by peptide mass fingerprinting from mass spectrometric data and sequence analysis obtained by tandem mass spectrometry of the principal mass spectral peaks using a data-dependent scanning protocol. These data were compared with those from mass spectrometric analysis using capillary LC/MALDI-time-of-flight (TOF) and capillary LC/electrospray ionisation (ESI)-quadrupole TOF. For all three configurations the resulting data were searched against the MSDB database, using MASCOT and the sequence coverage compared for each technique. Complementary data were obtained using the three techniques.  相似文献   

20.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号