首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
[reaction: see text] Air-stable and easily accessible PinP(O)H enables highly efficient palladium-catalyzed Kumada cross-coupling reactions of aryl tosylates. The in situ generated catalyst proved applicable not only to electron-rich and electron-poor carbocyclic tosylates but also to heterocyclic tosylates, such as pyridine and quinoline derivatives. The results described herein constitute the first use of air-stable secondary phosphine oxides as preligands for transition-metal-catalyzed coupling reactions between organometallic species and tosylates.  相似文献   

2.
A well-defined NHC-Pd(II)-Im complex 1 was found to be an effective catalyst for the Suzuki-Miyaura coupling of aryl sulfonates including tosylates and phenylsulfonates with arylboronic acids, giving the desired coupling products in good to high yields. Acceptable yields can also be achieved even by using the less reactive mesylates as the substrates. It is worthy of noting here that this is the first example of NHC-Pd(II) complex-catalyzed Suzuki-Miyaura coupling of aryl sulfonates with arylboronic acids, enriching an inexpensive, convenient, and alternative method for the synthesis of biaryl compounds.  相似文献   

3.
Mild palladium-catalyzed aminations of aryl tosylates and the first aminations of heteroaryl tosylates are described. In the presence of the combination of L2Pd(0) (L = P(o-tol)3) and the hindered Josiphos ligand CyPF-t-Bu, a variety of primary alkylamines and arylamines react with both aryl and heteroaryl tosylates at room temperature to form the corresponding secondary arylamines in high yields with complete selectivity for the monoarylamine. These reactions at room temperature occur in many cases with catalyst loadings of 0.1 mol % and 0.01 mol % in one case, constituting the most efficient aminations of aryl tosylates by nearly 2 orders of magnitude. This catalyst is made practical by the development of a convenient method to synthesize the L2Pd(0) precursor. This complex is stable to air as a solid. In contrast to conventional relative rates for reactions of aryl sulfonates, the reactions of aryl tosylates are faster than parallel reactions of aryl triflates, and the reactions of aryl tosylates are faster than parallel or competitive reactions of aryl chlorides.  相似文献   

4.
A method was developed for the nickel-catalyzed phosphonylation of aryl mesylates and tosylates with H(O)PR(1)R(2). To the best of our knowledge, this is the first example of nickel-catalyzed C-P coupling of aryl mesylates and tosylates. Most of the substrates gave moderate to good yields under our catalytic system.  相似文献   

5.
The first palladium-catalyzed coupling of vinyl tosylates with arylsulfinate salts is described. A variety of cyclic and acyclic vinyl tosylates were coupled with aryl sulfinate salts using 2.5 mol % Pd2(dba)3/5.0 mol % XantPhos to give vinyl aryl sulfone products in good yields. The coupling was extended to the preparation of a cyclopropyl vinyl sulfone.  相似文献   

6.
<正>4-Methoxy-4′-methylbiphenyl(3aa) [1] MeO White solid(0.324 g, 82% from aryl tosylate, 0.356 g, 90% from aryl sulfamate); m.p. 111–112 °C; 1H NMR(400 MHz,CDCl3) δ 7.50(d, J = 8.4 Hz, 2H), 7.44(d, J = 8.0 Hz, 2H), 7.21(d, J = 8.0 Hz, 2H), 6.95(d, J = 8.8 Hz, 2H), 3.82(s, 3H), 2.37(s, 3H); 13 C NMR(100 MHz, CDCl3) δ 159.0, 138.0, 136.4, 133.8, 129.5, 128.0, 126.6, 114.2, 55.4, 21.1. 4,4′-Dimethylbiphenyl(3ab) [1] White solid(0.320 g, 88% from aryl tosylate, 0.346 g, 95% from aryl sulfamate); m.p. 122–123 °C; 1H NMR(400 MHz,CDCl3) δ 7.47(d, J = 8.0 Hz, 4H), 7.22(d, J = 8.0 Hz, 4H), 2.37(s, 6H); 13 C NMR(100 MHz, CDCl3) δ 138.4, 136.8, 129.5, 126.9, 21.2.  相似文献   

7.
Two procedures for the alpha-arylation of carbonyl compounds under conditions that are more neutral than those of reactions of aryl halides with alkali metal enolates are reported. The first procedure rests upon the development of catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) and the highly reactive dimeric Pd(I) complex {P(t-Bu)3]PdBr}2. By this procedure, zinc enolates prepared from alpha-bromo esters and amides react with aryl halides to form alpha-aryl esters and amides in high yields under mild conditions with 1-2 mol % catalyst and with remarkable functional group tolerance. By the second procedure, silyl ketene and silyl ketimine acetals react with aryl bromides in the presence of substoichiometric zinc fluoride, 1 mol % Pd(dba)2, and 2 mol % P(t-Bu)3 in DMF solvent at 80 degrees C. Reactions of zinc tert-butyl acetate and propionate enolates and trimethylsilyl ketene acetals of tert-butyl propionate and methyl isobutyrate with aryl bromides bearing electron-donating and potentially reactive, base-sensitive electron-withdrawing groups and with pyridyl bromides are reported. In addition, the diastereoselective coupling of phenyl bromide with an imide enolate bearing the Evans auxiliary is reported, and this study shows that racemization of base-sensitive stereocenters does not occur during the coupling process under these more neutral conditions.  相似文献   

8.
A palladium‐catalyzed C(sp3)−C(sp2) Suzuki–Miyaura cross‐coupling of aryl boronic acids and α‐(trifluoromethyl)benzyl tosylates is reported. A readily available, air‐stable palladium catalyst was employed to access a wide range of functionalized 1,1‐diaryl‐2,2,2‐trifluoroethanes. Enantioenriched α‐(trifluoromethyl)benzyl tosylates were found to undergo cross‐coupling to give the corresponding enantioenriched cross‐coupled products with an overall inversion in configuration. The crucial role of the CF3 group in promoting this transformation is demonstrated by comparison with non‐fluorinated derivatives.  相似文献   

9.
The first general method for the Pd-catalyzed amination of aryl tosylates and benzenesulfonates was developed utilizing ligand 1, which belongs to a new generation of biaryl monophosphine ligands. In addition, the new catalyst system for the first time enables amidation of aryl arenesulfonates and aqueous amination protocols that do not necessitate the use of cosolvents. The substrate scope has been significantly expanded to include aryl halides containing primary amides and free carboxylic acid groups. In the case of multifunctional substrates, the Pd-catalyzed amination can provide selectivity that is complementary to the Cu-catalyzed C-N bond-forming processes.  相似文献   

10.
An exploration of the scope and limitations of Pd(0)-catalyzed intramolecular coupling reactions of amino-tethered aryl halides and ketones has been conducted. Two different and competitive reaction pathways starting from omega-(2-haloanilino) alkanones, enolate arylation and addition to the carbonyl group, have been observed, while omega-(2-halobenzylamino) alkanones exclusively underwent the enolate arylation process. The dichotomy between ketone alpha-arylation and carbonyl-addition in the reactions of omega-(2-haloanilino) alkanones has been rationalized by the intermediacy of unprecedented four-membered azapalladacycles, from which X-ray data and chemical behavior are reported.  相似文献   

11.
《中国化学》2017,35(9):1366-1370
A new protocol for the NiCl2 ‐catalyzed cross‐electrophile coupling of aryl bromides with pyrimidin‐2‐yl tosylates to give the corresponding C2 ‐arylation pyrimidine derivatives has been developed. This study provides an improvement over previous methods by using pyrimidin‐2‐yl tosylates instead of halides as coupling partners that are stable and easily available.  相似文献   

12.
Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of aryl tosylates with potassium aryl trifluoroborate in the presence of bulky and electron-rich phosphine ligand is described. In addition, a useful chemoselective coupling of an aryl chloride in the presence of a tosyloxy group was demonstrated.  相似文献   

13.
A new method for the cross-coupling reaction of Grignard reagents with alkyl chlorides, bromides, and tosylates has been developed by the use of a nickel catalyst in the presence of a diene as an additive. This reaction proceeds efficiently at 0-25 degrees C in THF using primary and secondary alkyl and aryl Grignard reagents. Nickel complexes bearing no phosphine ligands, such as NiCl2, Ni(acac)2, and Ni(COD)2, afford the coupling products in good yields, whereas NiCl2(PPh3)2 and NiCl2(dppp) were less effective. 1,3-Butadiene shows the highest activity as an additive for the present coupling reaction. A plausible reaction pathway was proposed.  相似文献   

14.
An investigation of the NiCl(2)(dppe)-, NiCl(2)(dppb)-, NiCl(2)(dppf)-, NiCl(2)(PCy(3))(2)-, and NiCl(2)(PPh(3))(2)-catalyzed cross-coupling of the previously unreported aryl mesylates, and of aryl arenesulfonates, chlorides, bromides, and iodides containing electron-withdrawing and electron-donating substituents with aryl boronic acids, in the absence of a reducing agent, is reported. NiCl(2)(dppe) was the only catalyst that exhibited high and solvent-independent activity in the two solvents investigated, toluene and dioxane. NiCl(2)(dppe) with an excess of dppe, NiCl(2)(dppe)/dppe, was reactive in the cross-coupling of electron-poor aryl mesylates, tosylates, chlorides, bromides, and iodides. This catalyst was also efficient in the cross-coupling of aryl bromides and iodides containing electron-donating substituents. Most surprisingly, the replacement of the excess dppe from NiCl(2)(dppe)/dppe with excess PPh(3) generated NiCl(2)(dppe)/PPh(3), which was found to be reactive for the cross-coupling of both electron-rich and electron-poor aryl mesylates and chlorides. Therefore, the solvent-independent reactivity of NiCl(2)(dppe) provides an inexpensive and general nickel catalyst for the cross-coupling of aryl mesylates, tosylates, chlorides, bromides, and iodides with aryl boronic acids.  相似文献   

15.
A general catalytic system for the coupling of aryl halides and sulfonates with thiols based on the use of the CyPF-t-Bu ligand (1) is reported. The reactions catalyzed by complexes of 1 occur in excellent yields with broad scope and exhibit extraordinary turnover numbers and high tolerance of functional groups. Turnover numbers usually exceed those of previous catalysts by 2 or 3 orders of magnitude. In addition, the reactions of aryl tosylates with alkane thiols to form aryl sulfides are reported for the first time. Finally, the synthesis of a diarylsulfide from two bromoarenes was accomplished using a hydrogen sulfide surrogate.  相似文献   

16.
The radical–radical coupling reaction is an important synthetic strategy. In this study, the iron-catalyzed radical–radical cross-coupling reaction based on the decarboxylation of keto acids and decarbonylation of aliphatic aldehydes to obtain valuable aryl ketones is reported for the first time. Remarkably, when tertiary aldehydes were used as carbonyl sources, ketone esters were selectively obtained instead of ketones. The gram-scale preparation of aryl ketone through this strategy was easily achieved by using only 3 mol % of the iron catalyst. As a proof-of-concept, the bioactive molecule flurprimidol was synthesized in two steps by using this strategy.  相似文献   

17.
[Reaction: see text]. Aryl and alkenyl tosylates are easily prepared, inexpensive and, thus, attractive for transition-metal-catalyzed couplings, but their reactivity is low. We report examples of mild, palladium-catalyzed coupling of aryl, alkenyl, and alkyl Grignard reagents with aryl and alkenyl tosylates. The resulting biaryls, vinylarenes, and alkylarenes were isolated in good to excellent yield. These couplings were conducted with a nearly equimolar ratio of the two reactants, and many examples were conducted at room temperature.  相似文献   

18.
A family of indolyl phosphine ligands was applied to Suzuki-Miyaura cross-coupling of aryl tosylates. Catalyst loading can be reduced to 0.2 mol % for coupling of nonactivated aryl tosylate. A challenging example for room temperature coupling is realized. The scope of this highly active Pd/L2 system can be extended to other boron nucleophiles, including trifluoroborate salts and boronate esters. The ligand structural comparisons toward the reactivity in tosylate couplings are also described.  相似文献   

19.
The cross-coupling of aryl tosylates with amines and anilines was accomplished by using a Ni-based catalyst system from the combination of Ni(II)-(sigma-aryl) complexes/N-heterocyclic carbenes (NHCs). The feature, scope, and limitation of this reaction are disclosed.  相似文献   

20.
A series of 2,4‐diarylquinazolines have been successfully synthesized via the Ni‐catalyzed cross‐coupling reaction of quinazoline‐4‐tosylates and aryl Grignard reagents, which provided alternative straightforward approaches for the introduction of aryl groups to quinazolines at C‐4 position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号