首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了两体和三体相互作用空间调制情形下Bessel型光晶格中准二维玻色-爱因斯坦凝聚体系中物质波孤立子的稳定性.利用标准的变分法程序,得出体系有效势能的表达式,进而根据有效势能结构给出了体系的稳定性条件.结果表明,在有Bessel型光晶格和没有Bessel型光晶格的情况下,体系均能形成稳定的孤立子解,但是有晶格参与时,体系有很大范围的稳定区间.另外,稳定性受两体相互作用和三体相互作用共同支配,其中两体相互作用对体系的稳定性起主导作用,三体相互作用和相互作用的空间调制只对稳定性起调节作用,但是在特定情况下,必须要有三体相互作用或者相互作用空间调制的参与才能形成稳定的孤立子解.  相似文献   

2.
研究了两体和三体相互作用空间调制情形下Bessel型光晶格中准二维玻色-爱因斯坦凝聚体系中物质波孤立子的稳定性. 利用标准的变分法程序, 得出体系有效势能的表达式, 进而根据有效势能结构给出了体系的稳定性条件. 结果表明, 在有Bessel型光晶格和没有Bessel型光晶格的情况下, 体系均能形成稳定的孤立子解, 但是有晶格参与时, 体系有很大范围的稳定区间. 另外, 稳定性受两体相互作用和三体相互作用共同支配, 其中两体相互作用对体系的稳定性起主导作用, 三体相互作用和相互作用的空间调制只对稳定性起调节作用, 但是在特定情况下, 必须要有三体相互作用或者相互作用空间调制的参与才能形成稳定的孤立子解.  相似文献   

3.
We study the dynamics of bright solitons formed in a Bose-Einstein condensate with attractive atomic interactions perturbed by a weak bichromatic optical lattice potential. The lattice depth is a biperiodic function of time with a zero mean, which realizes a flashing ratchet for matter-wave solitons. We find that the average velocity of a soliton and the soliton current induced by the ratchet depend on the number of atoms in the soliton. As a consequence, soliton transport can be induced through scattering of different solitons. In the regime when matter-wave solitons are narrow compared to the lattice period the dynamics is well described by the effective Hamiltonian theory.  相似文献   

4.
By means of an extended variational approach, we study dynamics for gap solitons in a repulsive interaction Bose-Einstein condensate under both a harmonic and an optical lattice confinement. The simplified analytic theory gives the critical strength ratio of harmonic to optical lattice necessary to support multiple stable lattice sites for the condensate. Moreover, we use numerical experiments to guide and manipulate the gap solitons to an arbitrary position via a time-dependent potential. All predictions of the extended variational approach are reasonably close to results of the simulations. In particular,
the variational model helps capture the composition relationship between the variations of chirp and amplitude.  相似文献   

5.
We investigate the stability and collision dynamics of dissipative matter-wave solitons formed in a quasi-onedimensional Bose-Einstein condensate with linear gain and three-body recombination loss perturbed by a weak optical lattice.It is shown that the linear gain can modify the stability of the single dissipative soliton moving in the optical lattice.The collision dynamics of two individual dissipative matter-wave solitons explicitly depend on the linear gain parameter,and they display different dynamical behaviors in both the in-phase and out-of-phase interaction regimes.  相似文献   

6.
宗丰德  张解放 《物理学报》2008,57(5):2658-2668
首先建立起玻色-爱因斯坦凝聚孤子链的微扰复数Toda链理论,然后深入研究玻色-爱因斯坦凝聚N-孤子间的绝热相互作用,分别通过对二次外势场、周期性外势场和二者叠加的复合外势场所引起的三类微扰,利用微扰的复数Toda链理论给出了解析处理, 并和基于分步傅里叶变换的直接数值方法进行比较,发现微扰的复数Toda链方程能够充分揭示上述三类外势场中的N-孤子链的动力学行为和特征.同时还给出了从孤子链中提取一个或多个局域态的倾斜势场或周期性势场的强度临界值,这可为玻色-爱因斯坦凝聚的实验研究 关键词: 玻色-爱因斯坦凝聚 Gross-Pitaevskii方程 物质波孤子 相互作用  相似文献   

7.
We make use of a coordinate-free approach to implement Vakhitov-Kolokolov criterion for stability analysis in order to study the effects of three-body atomic recombination and lattice potential on the matter-wave bright solitons formed in Bose-Einstein condensates. We analytically demonstrate that (i) the critical number of atoms in a stable BEC soliton is just half the number of atoms in a marginally stable Townes-like soliton and (ii) an additive optical lattice potential further reduces this number by a factor of √1 − bg 3 with g 3 the coupling constant of the lattice potential and b = 0.7301.   相似文献   

8.
何章明  张志强  朱善华  柳闻鹃 《物理学报》2014,63(19):190502-190502
考虑外部囚禁势阱为光晶格势阱,研究了二元玻色-爱因斯坦凝聚体中亮-亮孤子的动力学行为.结果表明,亮-亮孤子的运动方向和振荡行为可以分别通过调节光晶格势阱的晶格常数和势阱深度来控制.进一步地,亮-亮孤子还可以被局域在光晶格势阱中,并且随着势阱深度的增加,局域孤子会产生分裂行为.  相似文献   

9.
We present three families of one-soliton solutions for (2+1)-dimensional Gross-Pitaevskii equation with both time-dependent scattering length and gain or loss in a harmonic trap. Then we investigate the dynamics of these solitons in Bose-Einstein condensates (BECs) by some selected control functions. Our results show that the intensities of these solitons first increase rapidly to the condensation peak, then decay very slowly to the background; thus the lifetime of a bright soliton, a train of bright solitons and a dark soliton in BECs can be all greatly extended. Our results offer a useful method for observing matter-wave solitons in BECs in future experiments.  相似文献   

10.
11.
The dynamics of matter-wave solitons in Bose-Einstein condensates (BEC) is considerably affected by the presence of a thermal cloud and the dynamical depletion of the condensate. Our numerical results, based on the time-dependent Hartree-Fock-Bogoliubov theory, demonstrate the collapse of the attractively interacting BEC via collisional emission of atom pairs into the thermal cloud, which splits the (quasi-one-dimensional) BEC soliton into two partially coherent solitonic structures of opposite momenta. These incoherent matter waves are analogous to optical random-phase solitons.  相似文献   

12.
We study matter-wave solitons in Bose-Einstein condensates of ultracold gaseous atoms with spin degrees of freedom and present a class of exact solutions based on the inverse scattering method. The one-soliton solutions are classified with respect to the spin states. We analyze collisional effects between solitons in the same or different spin state(s), which reveals a very interesting possibility: we can manipulate the spin dynamics by controlling the parameters of colliding solitons.  相似文献   

13.
The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully “nonlinear quasi-crystal”.A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov–Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross–Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose–Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.  相似文献   

14.
We investigate effects of the application of a kick to one-dimensional matter-wave solitons in a self-attractive Bose-Einstein condensate trapped in an optical lattice. The resulting soliton’s dynamics is studied within the framework of the time-dependent nonpolynomial Schrödinger equation. The crossover from the pinning to quasi-free motion crucially depends on the size of the kick, strength of the self-attraction, and parameters of the optical lattice.  相似文献   

15.
We propose a scheme for the creation of stable three-dimensional bright solitons in Bose-Einstein condensates, i.e., the matter-wave analog of so-called spatiotemporal "light bullets." Off-resonant dressing to Rydberg nD states is shown to provide nonlocal attractive interactions, leading to self-trapping of mesoscopic atomic clouds by a collective excitation of a Rydberg atom pair. We present detailed potential calculations and demonstrate the existence of stable solitons under realistic experimental conditions by means of numerical simulations.  相似文献   

16.
《Physics letters. A》2020,384(11):126243
We analyze the dynamics of bright-bright solitons in two-component Bose-Einstein condensates (BECs) subject to parametric perturbations using the variational approach and direct numerical simulations. The system is described by a vector nonlinear Schrödinger equation (NLSE) appropriate to coupled multi-component BECs. A periodic variation of the inter-component coupling coefficient is used to explore nonlinear resonances and splitting of the coupled bright solitons. The analytical predictions are confirmed by direct numerical simulations of the vector NLSE.  相似文献   

17.
We reveal the existence of asymmetric vortex solitons in ideally symmetric periodic lattices and show how such nonlinear localized structures describing elementary circular flows can be analyzed systematically using the energy-balance relations. We present the examples of rhomboid, rectangular, and triangular vortex solitons on a square lattice and also describe novel coherent states where the populations of clockwise and anticlockwise vortex modes change periodically due to a nonlinearity-induced momentum exchange through the lattice. Asymmetric vortex solitons are expected to exist in different nonlinear lattice systems, including optically induced photonic lattices, nonlinear photonic crystals, and Bose-Einstein condensates in optical lattices.  相似文献   

18.
We present an overview of our recent theoretical studies on the quantum phenomena of the spin-1 Bose-Einstein condensates, including the phase diagram, soliton solutions and the formation of the topological spin textures. A brief exploration of the effects of spin-orbit coupling on the ground-state properties is given. We put forward proposals by using the transmission spectra of an optical cavity to probe the quantum ground states: the ferromagnetic and polar phases. Quasi-one-dimension solitons and ring dark solitons are studied. It is predicted that characteristics of the magnetic solitons in optical lattice can be tuned by controlling the long-range light-induced and static magnetic dipoledipole interactions; solutions of single-component magnetic and single-, two-, three-components polar solitons are found; ring dark solitons in spin-1 condensates are predicted to live longer lifetimes than that in their scalar counterparts. In the formation of spin textures, we have considered the theoretical model of a rapidly quenched and fast rotating trapped spin-1 Bose-Einstein condensate, whose dynamics can be studied by solving the stochastic projected Gross-Pitaevskii equations. Spontaneous generation of nontrivial topological defects, such as the hexagonal lattice skyrmions and square lattice of half-quantized vortices was predicted. In particular, crystallization of merons (half skyrmions) can be generated in the presence of spin-orbit coupling.  相似文献   

19.
We demonstrate that a Bose-Einstein condensate in an optical lattice forms a reconfigurable matter-wave structure with a band-gap spectrum, which resembles a nonlinear photonic crystal for light waves. We study in detail the case of a two-dimensional square optical lattice and show that this atomic band-gap structure allows nonlinear localization of atomic Bloch waves in the form of two-dimensional matter-wave gap solitons.  相似文献   

20.
We study the dynamics of bright matter-wave solitons in a Bose-Einstein condensate with negative scattering length under the influence of a time-periodic ratchet potential. The potential is formed by a one-dimensional bichromatic optical lattice which flashes on and off so that the time average of its amplitude vanishes. Due to the broken space and time-reversal symmetries of the potential, the soliton is transported with a nonzero average velocity. By employing the non-dissipative mean-field model for the matter waves, we study the dependence of the transport velocity on the initial state of the soliton and show how the properties of the individual localized states affect the outcome of their collisions. A useful insight into the transport properties is provided by Hamiltonian theory for the mean field, which treats the extended matter-wave excitation as an effective classical particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号