首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fiber optic Z-cell for CZE was designed, constructed, tested and compared with on-column detection. Ten times higher sensitivity for Z-cell in comparison with on-column detection was achieved as expected from optical pathlength ratio. Linear dynamic range was > 4 orders of magnitude for both cells.  相似文献   

2.
This paper describes the development of a generic platform for enhanced, integrated optic sensors based on fluorescence detection. The platform employs a novel optical configuration in order to achieve enhanced performance and has inherent multianalyte detection capability. The sensor element comprises a multimode ridge waveguide that has been patterned with an analyte-sensitive fluorescent spot, which is excited directly using a LED. The platform was applied to the detection of gaseous oxygen as a proof of principle. The sol-gel-derived sensor spots were doped with an oxygen-sensitive fluorescent dichlororuthenium dye complex and intensity-based calibration data were generated from the oxygen-dependent waveguide output. The sensor achieved a LOD of 0.62% and a resolution of less than 0.96% gaseous oxygen, which compares favourably with a similar, recently reported system. This device highlights the combination of inexpensive rapid prototyping techniques and a dedicated sensor enhancement strategy that together facilitate the production of an effective prototype sensor platform.  相似文献   

3.
4.
Fiber optic sensors continue to attract considerable attention and have been widely applied to diverse analytes. The current state of the art will be reviewed with the major focus on extrinsic fiber optic chemical sensors. Fiber optic characteristics, instrumentation and configurations will be described. Representative applications will be discussed from the clinical, industrial, and environmental areas. Advantages, limitations, and future directions will be discussed.  相似文献   

5.
Novel spectroscopic sensor based on a hetero-core structured fiber optic is described in this paper. The hetero-core structured fiber optic consists of multi mode fibers and a short piece of single mode fiber which was inserted in the multi mode fibers. Phenol red and/or cresol red as pH sensitive dyes were immobilized on the surface of the hetero-core portion by using sol-gel method, and the pH change detection was performed by immersing the hetero-core portion into the solution. In the case that the cresol-red immobilized fiber was immersed in the alkaline and/or acidic solution, the peak wavelength of the propagating loss spectra were about 575 and 545 nm, respectively. These propagating loss spectra were similar to that of the absorbance spectra of the dye solution. In the propagating loss spectra of phenol-red immobilized fiber, these spectra were similar to that of the dye solution. The colorimetric change of the dye in the support matrix was reversible, and the response time of the sensor was within 30 s.  相似文献   

6.
Raman micro-probe spectroscopy has been applied to the analysis of a non catalogued hand-crafted wallpaper during its restoration process. The analysis has been totally non-destructive without the necessity of taking any sample. The artwork showed a great chromatic palette having been detected the presence of calcium carbonate, Prussian blue, ultramarine blue, gypsum (CaSO4.2H2O), minium (Pb3O4), vermilion (HgS), chrome orange (CaCO3), chrome yellow (PbCrO4), barium sulphate and carbon black (C). From the spectroscopic analysis the date of its manufacturing has been set between 1828 and 1830, introduction of chrome yellow and orange, as well as artificial ultramarine blue, and 1840, when continuous industrial wallpapers were extensively manufactured in Europe.  相似文献   

7.
Opitz N  Lübbers DW 《Talanta》1988,35(2):123-127
The analytical potential of fluorescence-based optochemical sensors (optodes) has been expanded by use of (1) electrochromic dyes incorporated in thin polymeric multilayers by means of Langmuir-Blodgett film techniques, (2) enzyme-catalysed biochemical reactions and (3) antibody-linked immunological reactions. Fluorescence optical biosensors have been developed for the determination of electrical potentials (e.g., those produced by ion-selective membranes) and of hormones (e.g., thyroxine) and metabolites (e.g., lactate, glucose, xanthine and ethanol).  相似文献   

8.
A portable UV (190–400 nm) spectrophotometric based reflected fiber optic sensor system is presented for the on-site detection and identification of explosives. A reflected fiber optic sensor for explosives analysis was developed, with low sample consumption (20–100 nL) and a wide concentration quantification range (1.1–250 mg L−1). Seven common explosives [pentaerythritol tetranitrate (PETN), trinitrophenylmethylnitramine (CE), trinitrotoluene (TNT), dinitrotoluene (DNT), picric acid (PA), cyclotetramethylenetetranitramine (HMX), cyclotrimethylenetrinitramine (RDX)] and a PETN–RDX mixture (to simulate the Semtex used in many terrorist bombings) were quantitatively analyzed and identified by the proposed system in less than 3 s per test, with limits of detection (LOD) of 0.3 mg L−1. Due to chemical interference problems in the UV wavelengths range, a novel feature matching algorithm (FMA) was proposed for explosive identification, which was proved to have higher specificity and better anti-interference ability. Real post-blast debris samples were analyzed by the proposed method, and the results were validated against an LC/MS/MS method. The rapid, cost-effective detection with low sample consumption and wide applicability achieved by this system is highly suitable for homeland security on-site applications, such as rapid sample screening in post-blast debris.  相似文献   

9.
10.
Summary Near-Infrared Spectroscopy (NIR) is an ideal technique for use in refinery applications in both on-line situations as well as in the laboratory. NIR offers several advantages over traditional methods, including the ability to make measurements remotely over fiber optics, rapid results, and multiplexing capability.  相似文献   

11.

Background  

Autosomal dominant optic atrophy (ADOA), a form of progressive bilateral blindness due to loss of retinal ganglion cells and optic nerve deterioration, arises predominantly from mutations in the nuclear gene for the mitochondrial GTPase, OPA1. OPA1 localizes to mitochondrial cristae in the inner membrane where electron transport chain complexes are enriched. While OPA1 has been characterized for its role in mitochondrial cristae structure and organelle fusion, possible effects of OPA1 on mitochondrial function have not been determined.  相似文献   

12.
The anhydrous iodates of Cr, Mn, Fe, Co and β-Ni form a single isomorphous family, crystallizing in space group P63 or P6322 with lattice constants typified by Mn(IO3)2 of a = 11.178 ± 0.002, c = 5.035 ± 0.001 Å and four formulas per unit cell; in addition, α-Ni(IO3)2 forms as a second phase. Mn(IO3)2, Fe(IO3)3, α-Ni(IO3)2 and β-Ni(IO3)2 order antiferromagnetically at 6.5, 17.0, 3.5 and 5.0 K, respectively; Cr(IO3)3 and Co(IO3)2 remain paramagnetic to 1.5 K. Below ΘN, a weak ferromagnetic moment develops in the Mn, α-Ni and β-Ni iodates. All the anhydrous iodates generate second harmonics. Co(IO3)2 · 4H2O and β-Ni(IO3)2 · 4H2O crystallize isomorphously in space group P21c, with lattice constants a = 8.370 ± 0.005, b = 6.572 ± 0.007, c = 8.514 ± 0.008 Å, β = 99.8 ± 0.1° for the Co compound. Co(IO3)2 · 2H2O is triclinic, with a = 6.666 ± 0.015, b = 10.991 ± 0.025, c = 4.913 ± 0.011 Å, α = 93.1 ± 0.1, β = 92.1 ± 0.1, γ = 98.9 ± 0.1°, space group P1, and Ni(IO3)2 · 2H2O is orthorhombic, a = 9.14986 ± 0.00008, b = 12.20896 ± 0.00022, c = 6.58353 ± 0.00013Å at 298 K, space group Pbca. The Co iodate hydrates are paramagnetic to 1.5 K; both Ni hydrates are antiferromagnetic, the dihydrate also developing a weak ferromagnetic moment. The lattice spacings of all 11 compounds are presented, 9 with indexing.  相似文献   

13.
Three anhydrous polymorphs of cupric iodate, two hydrates, and the basic iodate salesite have been investigated. α-Cu(IO3)2 is monoclinic, space group P21, with a = 5.551 ± 0.008, b = 5.101 ± 0.004, c = 9.226 ± 0.010 Å and β = 95°4′ ± 11′, with two formulas in the unit cell. Below ΘN = 8.5 K, α-Cu(IO3)2 is antiferromagnetic and also pyroelectric. β-Cu(IO3)2 is triclinic, space group P1, with a = 11.230 ± 0.006, b = 11.368 ± 0.009, c = 10.630 ± 0.009 Å, α = 99°18.3′ ± 0.3′, β = 107°0.4′ ± 0.2′ and γ = 114°23.8′ ± 0.2′ and eight formulas per unit cell: the crystal is paramagnetic to 1.4K. γ-Cu(IO3)2 is monoclinic, space group P21m, with a = 4.977 ± 0.004, b = 6.350 ± 0.004, c = 8.160 ± 0.004 Å and β = 92°20′ ± 4′, with two formulas per unit cell; γ-Cu(IO3)2 becomes antiferromagnetic below ΘN = 5 K. Cu(IO3)2·2H2O is monoclinic, space group P21c, with a = 6.725 ± 0.005, b = 4.770 ± 0.007, c = 11.131 ± 0.013 Å and β = 103°1′ ± 4′, with two formulas per unit cell; Cu(IO3)2·2H2O is paramagnetic to 1.4 K. Cu(IO3)2·23H2O (mineral bellingerite) is triclinic, space group P1, with a = 7.197 ± 0.005, b = 7.824 ± 0.004, c = 7.904 ± 0.004 Å, α = 105°2′ ± 2′, β = 97°7′ ± 2′ and γ = 92°54′ ± 2′ with three formulas per unit cell; this crystal is paramagnetic to 1.4 K, with a moderate antiferromagnetic Cu-Cu interaction. Cu(OH)IO3 (mineral salesite) is orthorhombic, with a = 10.772 ± 0.004, b = 6.702 ± 0.002 and c = 4.769 ± 0.002 Å and four formulas per unit cell. The magnetic susceptibility indicates the possibility of antiferromagnetic ordering at 162 K; strong antiferromagnetic interactions give Θp = ?340 K. The only copper iodate studied that generates second harmonics is α-Cu(IO3)2. Indexed powder patterns are given for all six compounds.  相似文献   

14.
Cardoso AA  Liu H  Dasgupta PK 《Talanta》1997,44(6):1099-1106
A fluorometric technique based on a liquid drop excited from its interior by an optical fiber is described for the measurement of low concentrations of atmospheric hydrogen sulfide (H(2)S). A drop of alkaline fluorescein mercuric acetate (FMA) solution is suspended in a flowing air sample stream and serves as a renewable sensor. An optical fiber contained within the conduit that forms the drop, brings in the excitation beam; the fluorescence emission is measured by an inexpensive photodiode positioned close to the drop. As H(2)S in the sample is collected by the alkaline drop, it reacts rapidly with FMA resulting in a significant decrease in fluorescence intensity, proportional to the concentration of H(2)S sampled. The chemistry of this uniquely selective reaction has been well established for many years; the present technique permits a simple fast inexpensive near real-time measurement with very little reagent consumption. Even without prolonged sampling/preconcentration steps, limits of detection (LODs) in the double digit ppbv range is readily attainable.  相似文献   

15.
An optical biosensor for the determination of hydrogen peroxide based on immobilized horseradish peroxidase is described. The fluorescence of the dimeric product of the enzyme catalysed oxidation of homovanillic acid is utilized to determine the concentration of H2O2. The membrane-bound enzyme is attached to a bifurcated fibre bundle permitting excitation and detection of the fluorescence by a fluorometer. The response of the sensor is linear from 1 to 130 M hydrogen peroxide; the coefficient of variation is 3%. The sensor is stable for more than 10 weeks. The operating pH for maximal sensor response is 8.15. This allows the sensor to be used in combination with oxidase reactions producing hydrogen peroxide, as is demonstrated with a co-immobilized lactate oxidase-horseradish peroxidase optode for the determination of L-lactate. The fluorescence intensity of this sensor depends linearly on the concentration of lactate between 3 and 200 M and a throughput of 10 samples per hour is possible. The precision is in the same range as that of the monoenzyme optode. The lifetime of the bienzyme sensor for lactate is considerably shorter than that of the peroxidase sensor; it is limited by the stability of the immobilized lactate oxidase enzyme. The sensor has been applied to the determination of lactate in control serum.  相似文献   

16.
The sulfite fiber optic biosensor developed herein is based on the enzymatic oxidation reaction of sulfite catalyzed by sulfite oxidase (SOD). The consumption of O(2) is measured with an O(2) fiber optic sensor which monitors the fluorescence quenching of the indicator, perylene, by molecular oxygen. Perylene is immobilized into a polymer matrix and attached to the end of a fiber bundle forming an O(2) sensor. The enzyme, sulfite oxidase is immobilized on a pre-activated membrane and mounted onto the O(2) sensor. Several analytical characteristics of this sulfite biosensor were investigated including dynamic range, reversibility, reproducibility, stability and selectivity. The sulfite contents of various food samples, e.g. dried fruits, potato flakes, lemon juice were determined and the results obtained were in good agreement with the standard AOAC method.  相似文献   

17.
Arnold MA  Zhou X  Petsch RS 《Talanta》1994,41(5):783-787
Feasibility is demonstrated for a novel gas-sensing, internal enzyme biosensing scheme for the selective measurement of hydrogen peroxide. Two horseradish peroxidase catalysed reactions are evaluated for the detection of hydrogen peroxide as it crosses a microporous Teflon membrane at 37 degrees C. The rate at which hydrogen peroxide crosses the membrane is determined by either a fluorescence or chemiluminescence measurement and this rate is related to the concentration of hydrogen peroxide in the sample solution. Detection limits of 0.7 mM and 10 muM are estimated for the fluorescence and chemiluminescence methods, respectively. Selectivity is demonstrated for hydrogen peroxide over ascorbic acid, uric acid and tyrosine.  相似文献   

18.
Stadnik D  Dybko A 《The Analyst》2003,128(6):523-526
A new construction of a fibre optic coupler is presented in the paper. Two polymer optical fibres were used to build a coupler in which coupling efficiency of optical power depends on the refractive index of liquid delivered to a microchannel formed by the fibres. The coupler was tested as a detector in saccharose concentration measurements, and was used in absorbance measurements. A red light emitting diode and a spectrometer were used as a light source and a photodetector, respectively. Experiments confirmed that the coupler can be used for the real time monitoring of the changes in the refractive index of a saccharose solution exhibiting repeatable changes in the signal, with no hysteresis. Absorbance tests were performed with a solution of bromothymol blue at different pH.  相似文献   

19.
A fibre optic biosensor based on luminol electrochemiluminescence (ECL) integrated in a flow injection analysis (FIA) system was developed for the detection of choline. The electrochemiluminescence of luminol was generated by a glassy carbon electrode polarised at +425 mV vs. a platinum pseudo-reference electrode. Choline oxidase (Chx) was immobilised either covalently on polyamide (ABC type) or on UltraBind preactivated membranes, or by physical entrapment in a photo-cross-linkable poly(vinyl alcohol) polymer (PVA-SbQ) alone or after absorption on a weak anion exchanger, DEAE (diethylaminoethyl) Sepharose. The optimisation of the reaction conditions and physicochemical parameters influencing the FIA biosensor response demonstrated that the choline biosensor exhibited the best performances in a 30 mM veronal buffer containing 30 mM KCl and 1.5 mM MgCl2, at pH 9. The use of a 0.5 ml min-1 flow rate enabled the measurement of choline by the membrane-based ECL biosensors in 8 or 5 min, with ABC or UltraBind membranes, respectively, whereas the measurement required only 3 min with the DEAE-PVA system. For comparison, the detection of choline was performed with Chx immobilised using the four different supports. The best performances were obtained with the DEAE-PVA-Chx sensing layer, which allowed a detection limit of 10 pmol, whereas with the ABC, the UltraBind and the PVA systems, the detection limits were 300 pmol, 75 pmol and 220 pmol, respectively. The DEAE-based system also exhibited a good operational stability since 160 repeated measurements of 3 nmol of choline could be performed with an RSD of 4.5% whereas the stability under the best conditions was 45 assays with the other supports.  相似文献   

20.
Optical fibres provide a universal sensing platform as they are easily integrated with a multitude of different sensing schemes. Such schemes enable the preparation of a multitude of sensors from relatively straightforward pH sensors, to more complex ones, including artificial olfaction sensors, high-density oligonucleotide arrays, and high-throughput cell-based arrays. Imaging fibre bundles comprised of thousands of fused optical fibres are the basis for an optically connected, individually addressable parallel sensing platform. Fibre optic imaging bundles possess miniature feature sizes (3-10 micron diameter fibres), allowing high-density sensor packing (approximately 2 x 10(7) sensors per cm2). Imaging fibre bundles transmit coherent images enabling combined imaging and sensing, relating the responses monitored by the sensor to observable physical changes. The individual fibre cores can also be selectively etched to form a high-density microwell array capable of housing complementary sized microsensors. The miniature feature sizes facilitate a faster response and more sensitive measurement capabilities. The platform is extremely versatile in its sensing design, allowing the sensing scheme to be tailored to fit the experimental design, whether for monitoring single analytes or more complex multiplexed assays. A number of sensing schemes and applications are described in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号