首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison between open microwave digestion and digestion by conventional heating was carried out for the determination of Cd, Cr, Cu, and Pb in two algae matrices using transverse heated electrothermal atomic absorption spectrometry (ETAAS). A SRM GBW 08504 cabbage was also analysed. These matrices were digested with HNO3, using a quartz vessel for microwave digestion and PFA vessel for digestion by conventional heating. Cd, Cu and Cr were determined without any modifier, while magnesium nitrate and ammonium phosphate mixed modifier was used for Pb. Results obtained by both the procedures were in good agreement with each other at 95% confidence level, and for SRM GBW 08504 cabbage the values agree well with the certified values. The limits of detection obtained were 0.0004, 0.060, 0.065 and 0.054 mg/kg for Cd, Cr, Cu, and Pb, respectively, using the microwave digestion process. The RSD for Cd was 10-15% and for the other elements 5-10%.  相似文献   

2.
A simple and rapid method for the direct determination of Cd, Cr, Cu, Pb and Zn in soil was developed. The method was developed using three certified reference materials of soil: Eutric Cambisol, Orthic Luvisols and Rendzina, which differed in their matrix composition. Chemical modifiers were essential to achieve reproducible and interference-free signals for the analytes studied. The best results were obtained with a Pd/Mg(NO3)2 admixture for the determination of Cd, Pb and Zn and NH4F for Cu. The combination of W (as a permanent modifier) and Mg(NO3)2 provided well-defined signal profiles for Cr. The following spectral lines were used: Cd 228.8 nm, Cr 520.6 nm, Cu 218.2 nm, Pb 205.3 nm and Zn 307.6 nm. The limit of detection was 4.2 ng g− 1 for Cd, 1.1 μg g− 1 for Cr, 0.5 μg g− 1 for Cu, 1.3 μg g− 1 for Pb and 8.6 μg g− 1 for Zn for the maximum sample mass used. Under optimized conditions, the analyte and matrix were separated effectively in situ, and aqueous standards could be used for calibration.  相似文献   

3.
Transverse heated graphite tubes with (EC-THGA) and without (THGA) ends caps have been tested with respect to characteristic mass, detection limits and reproducibilities at two levels of concentration for four different types of analytes. Compared for Cd, Pb and Cr with a standard THGA tube, the EC-THGA tube exhibits a gain of sensitivity by a factor of about 1.4 in terms of characteristic masses. Also detection limits are significantly improved for the end-capped tube design tested. The presence of end caps increases the mass of the tube and decreases consequently the heating rate achieved. As shown on the molybdenum example, the atomization efficiency of refractory metals is not so good as with standard THGA tubes. Interference effects studied on the Cd, Pb and Cr determinations in environmental samples (sediments, plants and animal tissues) are similarly negligible for the two tubes tested.  相似文献   

4.
Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at μg L1 levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages of this technique that reaches figures of merit equivalent to Inductively coupled plasma mass spectrometry (ICP-MS). Herein is presented an overview of recent advances and applications of (ETAAS) for the determination of As, Cd, Cu, Hg and Pb in biological samples drawn from studies over the last decade.  相似文献   

5.
The efficiency of two procedures for the digestion of lichen was investigated using a heating block and a microwave oven. In the open vessels, concentrated nitric acid was added to the samples, left for 1 h, and the addition of 30% (v / v) hydrogen peroxide completed the digestion. In the closed system, the complete digestion was performed using concentrated nitric acid and hydrogen peroxide, reducing the amount of chemicals, time and contamination risk. Both digestion methods gave comparable results, and recoveries were statistically not different. For a lichen sample spiked with 10 μg Pb, the recovery was 111% and 110% using microwave and heating block digestion, respectively, while it was 100% and 103% for a 100 μg Pb spike. For the determination by electrothermal atomic absorption spectrometry samples were diluted 20 times with water and a volume of 20 μL was injected into the graphite furnace without chemical modifier. Pyrolysis and atomization temperatures of 700 °C and 1500 °C, respectively, were used. The characteristic mass was 8.4 ± 0.6 pg for aqueous calibration solutions and 8.9 ± 0.8 pg for samples. Calibration was against matrix matched standards. The recovery test showed some contamination problem with the lowest concentrations in both procedures. The detection limits were 4.4 μg L 1 with microwave oven and 5.4 μg L 1 with the heating block in the undiluted blank.  相似文献   

6.
A method based on preconcentration of Cu and Cd from ultra-high-purity water by ion chromatography (IC) and determination by electrothermal atomic absorption spectrometry is described. A small low-capacity ion-exchange concentrator Dionex HPIC-CG5 and mobile phase of 3 mM pyridine-2,6-dicarboxylic acid (PDCA) are used. Water samples are loaded onto the preconcentration column at a flow-rate ranging from 1 to 3.5 ml min(-1). Large sample volumes (up to 200 ml) can be loaded onto the concentrator without losing metal ions. Elution is carried out in the reverse direction of sample loading and the volumes of effluent are as small as 0.150 and 0.200 ml for copper and cadmium, respectively. Under these conditions the preconcentrated ions coelute. The detection limits, based on the Hubaux-Vos method, for Cu using a 1300-fold preconcentration in the IC step was found to be 1 pg ml(-1), and was limited due to impurity in PDCA, while the detection limit found for Cd using a 1000-fold preconcentration was 0.02 pg ml(-1). Ultra-high-purity water produced by a Millipore system is successfully analysed by the proposed method and the content of Cu and Cd are found to lie in the range 1-10 pg ml(-1).  相似文献   

7.
Viitak A  Volynsky AB 《Talanta》2006,70(4):890-895
Electrothermal atomic absorption spectrometry was used for the determination of Cd, Pb, As and Se in the whole blood, serum, hair reference standard materials and the samples of algae collected at the coastal Estonian regions of Baltik sea. Instead of tedious and time-consuming experimental comparison of various chemical modifiers, theoretical consideration of the problem was applied for choosing the most prospective one (colloidal Pd) for solution of the given task. The experimental data obtained proved correctness of the choice. Pure standard solutions in diluted nitric acid were used for construction of the calibration graphs. The same experimental conditions were applied for each analyte for calibration solutions and all samples studied. In spite of very limited optimization procedures used, all the values obtained agree well with the corresponding reference values. Accuracy of the analysis of the algae samples was checked by recoveries of the spikes that were in the region 91-109%. Detection limits reached are 0.021, 1.2, 0.62 and 1.1 ng ml−1 for Cd, Pb, As and Se, respectively, in digests of biological samples.  相似文献   

8.
The literature on the use of microwave-assisted digestion procedures for subsequent sample analysis by means of electrothermal atomic absorption spectrometry (ETAAS) is reviewed. The literature survey reveals that this digestion technique has been applied mainly for biological materials. The elements most extensively determined by this method are cadmium and lead followed by copper, chromium, nickel and iron. The microwave digestion conditions, ETAAS furnace programmes and analytical details of the developed methodologies have been carefully revised.  相似文献   

9.
The literature on the use of microwave-assisted digestion procedures for subsequent sample analysis by means of electrothermal atomic absorption spectrometry (ETAAS) is reviewed. The literature survey reveals that this digestion technique has been applied mainly for biological materials. The elements most extensively determined by this method are cadmium and lead followed by copper, chromium, nickel and iron. The microwave digestion conditions, ETAAS furnace programmes and analytical details of the developed methodologies have been carefully revised.  相似文献   

10.
Lan WG  Wong MK  Sin YM 《Talanta》1994,41(2):195-200
Four microwave digestion methods of fish tissue for selenium determination by hydride generation atomic absorption spectrometry were compared, in which potassium hexacyanoferrate(III) was chosen as a masking agent for eliminating matrix interferences. The results showed that the methods employing HNO(3)/H(2)O(2), HNO(3)/K(2)S(2)O(8)/H(2)O(2) and HNO(3)/H(3)PO(4)/H(2)O(2) digestion media were unreliable. However, the decomposition using the digestion media of HNO(3)/H(2)SO(4)/H(2)O(2) enabled adequate digestion of fish tissue and retention of selenium in a state amenable for determination. Therefore, the digestion procedures with HNO(3)/H(2)SO(4)/H(2)O(2) media are proposed for the determination of selenium in fish tissue by hydride generation atomic absorption spectrometry. The recoveries of the spiked samples investigated ranged from 90 to 102%. The result obtained from analyzing the NIES CRM No. 6 mussel was in good agreement with the reference value (reference value: 1.5 mug/g; found: 1.45 +/- 0.05 mug/g). The limit of detection for selenium was 0.03 mug/g dry mass for a 100 mg sample. The contents of selenium in local fish species investigated ranged from 0.49 to 2.90 mug/g, and the relative standard deviation for the determination of selenium was less than 8%.  相似文献   

11.
12.
Schiavo D  Neira JY  Nóbrega JA 《Talanta》2008,76(5):1113-1118
The applicability of thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was evaluated for direct determination of Cu, Cd and Pb in wines and grape juices. The developed procedure does not require preliminary acid digestion of the samples. The optimum conditions for determination of Cu, Cd and Pb in wines were studied and the performance was compared to those typically obtained by flame atomic absorption spectrometry (FAAS). A sample volume of 150 microL was introduced into a heated nickel tube at a flow rate of 0.54 mLmin(-1) and 0.14 molL(-1) HNO(3) was used as sample carrier flowing at 2.5 mLmin(-1) for determining all analytes. The effect of ethanol concentrations on Cu, Cd and Pb absorbance signals were studied. All determinations were carried out by adopting optimized conditions and quantification was based on the standard additions method. Limits of detection (LOD) of 12.9, 1.8 and 5.3 microgL(-1) (n=14) for Cu, Cd and Pb, respectively, were obtained for wine samples (3sigma(blank)/slope, n=14). Relative standard deviations (R.S.D., %) of 2.7, 2.1 and 2.6 for Cu, Cd and Pb, were obtained (n=6) for wine samples. The values determined for grape juice samples were similar to these ones. The analytical throughput was 45 determinations h(-1) and accuracy was checked by addition-recovery experiments.  相似文献   

13.
Microwave closed-system wet digestion procedures for plant samples were examined. Each procedure was tested with samples of tobacco and cabbage, and included digestion by the use of different acids composition, almost complete evaporation of the digest, and then dissolution of the residue in 1% nitric acid. Three microwave digestion programs that varied power, duration, and temperature were used. Closed-vessel reactions followed open-vessel reaction-delay time. Using flame atomic absorption spectrometry on the digests, four or five elements were determined to evaluate effectiveness, precision and accuracy of analytes extraction into solution. After a preliminary study of tobacco digests, the four most effective procedures were chosen, and detailed investigations were carried out on both tobacco and cabbage reference materials. Although all four of the final procedures were accurate, the most precise procedure, with the lowest errors of determination, was using reverse ‘aqua regia’ for tobacco and ‘aqua regia’ for cabbage.  相似文献   

14.
Copper, iron and zinc were determined in serum by simultaneous atomic absorption spectrometry (SIMAAS). The minimalism approach was adopted throughout this analytical method, to reduce time, costs, sample, reagent, energy requirements, and residue production. Samples were 80-fold diluted with 0.01% (w/v) Triton X-100+1% (v/v) HNO3 directly in the autosampler cups. Three strategies were implemented to match the final diluted analyte concentrations with the SIMAAS linear concentration ranges: a reduced 5 μl aliquot of analytical reference or diluted sample solution was introduced into the preheated graphite tube at 100 °C; a super-estimated pyrolysis temperature was chosen for selective zinc volatilization; and a mini argon flow of 50 ml min−1 was used during the atomization step. The pyrolysis and atomization temperatures for the simultaneous heating program were 700 and 2300 °C, respectively. The characteristic masses for copper (26 pg), iron (16 pg), and zinc (2.7 pg) were estimated from the analytical graphs. The detection limits (n=20, 3σ) were 4.0, 2.2, and 0.4 μg l−1 for copper, iron and zinc, respectively. The reliability of the entire procedure was checked with the analysis of Seronorm™ trace elements in serum (Sero AS). Serum samples of five volunteers were analyzed and the recovery tests for additions of 2.0, 2.0 and 1.0 mg l−1 were 100±4, 99±6, and 95±5% for copper, iron and zinc, respectively.  相似文献   

15.
In this study Ru, deposited thermally on an integrated platform pyrolytic graphite tube, is proposed as a permanent modifier for the determination of Cu and Cr in urine samples by electrothermal atomic absorption spectrometry. The samples were diluted 1:1 with nitric acid (1% v/v). Pyrolysis and atomization temperatures for spiked urine samples were 1,100 degrees C and 1,900 degrees C respectively for Cu, and 1,400 degrees C and 2,500 degrees C respectively for Cr. For comparison purposes, the conventional modification with Pd+Mg was also studied. The sensitivity for Ru as permanent modifier was higher for the two analytes. The characteristic masses were 7.3 and 17.7 for Cr and Cu. The detection limits (3sigma) were 0.22 and 0.32 microg/L, for Cr and Cu, respectively. Good agreement was obtained with certified urine samples for the two elements.  相似文献   

16.
The experimental conditions for the determination of platinum, palladium and rhodium by graphite furnace atomic absorption spectrometry (GFAAS) are re-assessed. A certified material (BCR-723) was used as a working sample and analyzed using various extraction and atomization procedures in order to find the optimal experimental conditions that enable the quantitative and reproducible detection of platinum, palladium and rhodium in environmental matrices. Evidently, literature observations regarding the atomization conditions were proven fairly adequate. However, the provision of the optimum extraction conditions revealed several parameters that lie behind the reported uncertainties. The appropriate combination between extraction conditions and atomization programs afforded a considerable improvement in the recoveries and analytical features of platinum, palladium and rhodium determination with GFAAS. Cross-examination of the analytical data with various CRMs (certified reference materials) was used to validate the robustness of the method in heterogeneous matrices bearing different element levels. Under the optimum experimental conditions the method permits the determination at concentrations as low as (LOD(3S/N)) 1.9 ng g(-1), 0.45 ng g(-1) and 0.6 ng g(-1) for Pt, Pd and Rh, respectively affording recoveries in the range of 93-101%. The method was successfully applied to the assessment of Pt, Pd and Rh accumulation in real road dust and soil samples in Greece.  相似文献   

17.
Eight laboratories participated in an interlaboratory method performance (collaborative) study of a method for the determination of arsenic in foodstuffs of marine origin by electrothermal atomic absorption spectrometry after wet digestion using a microwave oven technique. The study was preceded by a practice round of familiarization samples. The method was tested on 8 materials (cod roe, krill, blue mussel, saithe, scampi, cod fillet, shrimp, and cod extract) ranging in As content from 2 to 75 mg/kg. The materials were sent to participants in the study as blind duplicates, and the participants were asked to perform single determinations on each sample. Repeatability relative standard deviations (RSDr) for As ranged from 6.8 to 17.4%. Reproducibility relative standard deviations (RSDR) ranged from 7.6 to 24%. The highest RSDR value was found for the sample with the highest concentration of As.  相似文献   

18.
Ultrasonic slurry sampling electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry (USS–ETV–DRC–ICP–MS) for the determination of Cr, Cd and Pb in several plastic samples, using NH4NO3 as the modifier, is described. The influences of the instrumental operating conditions and the slurry preparation technique on the ion signals are investigated. A reduction in the intensity of the background at signals corresponding to chromium masses (arising from matrix elements) was achieved by using NH3 as the reaction cell gas in the DRC. The method was applied to determine Cr, Cd and Pb in two polystyrene (PS) samples and a polyvinyl chloride (PVC) sample using two different calibration methods, namely standard addition and isotope dilution. The results were in good agreement with those for digested samples analyzed by ultrasonic nebulization DRC–ICP–MS. The precision between sample replicates was better than 17% with the USS–ETV–DRC–ICP–MS method. The method detection limits, estimated from standard addition curves, were about 6–9, 1–2 and 8–11 ng g−1 for Cr, Cd and Pb, respectively, in the original plastic samples.  相似文献   

19.
20.
采用常压湿式消解、常压微波消解两种方法处理近海海洋生物体,以石墨炉原子吸收法测定Cu、Pb、Cd和氢化物发生原子荧光法同时测定Hg、As。实验表明,以常压湿式消解法处理生物体,其Cu、Pb、Cd回收率分别为92%、103%、105%,而Hg、As的回收率分别是52%、58%。以常压微波消解法处理生物体,其Cu、Cd、Hg、As回收率分别为86%、94%、112%、94%,但用于Pb的测定,其回收率严重偏低。常压湿式消解、常压微波消解分别被用于海洋生物体样品中Cu、Pb、Cd和Hg、As的测定,有较好的测定结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号