首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The assessment of free Cu(II), Pb(II) and Cd(II) ions in the presence of complexed species was realised by a circulating dialysis with Cuprophan planar membranes and subsequent quantification by flame atomic absorption spectrometry. The effect of the flow rate, the time of equilibration, pH and the presence of various complexing agents in the donor solutions were studied. The determination of free Cu(II), Pb(II) and Cd(II) ions in the presence of soil humic substances resulted from the above studies.  相似文献   

2.
The present work investigates the influence of acid activation of montmorillonite on adsorption of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) from aqueous medium and comparison of the adsorption capacities with those on parent montmorillonite. The clay-metal interactions were studied under different conditions of pH, concentration of metal ions, amount of clay, interaction time, and temperature. The interactions were dependent on pH and the uptake was controlled by the amount of clay and the initial concentration of the metal ions. The adsorption capacity of acid-activated montmorillonite increases for all the metal ions. The interactions were adsorptive in nature and relatively fast and the rate processes more akin to the second-order kinetics. The adsorption data fitted both Langmuir and Freundlich isotherms, indicating that strong forces were responsible for the interactions at energetically nonuniform sites. The Langmuir monolayer capacity of the acid-activated montmorillonite is more than that of the parent montmorillonite (Cd(II): 32.7 and 33.2 mg/g; Co(II): 28.6 and 29.7 mg/g; Cu(II): 31.8 and 32.3 mg/g; Pb(II): 33.0 and 34.0 mg/g; and Ni(II): 28.4 and 29.5 mg/g for montmorillonite and acid-activated montmorillonite, respectively). The thermodynamics of the rate processes showed the adsorption of Co(II), Pb(II), and Ni(II) to be exothermic, accompanied by decreases in entropy and Gibbs free energy, while the adsorption of Cd(II) and Cu(II) was endothermic, with an increase in entropy and an appreciable decrease in Gibbs free energy. The results have established the potential use for montmorillonite and its acid-activated form as adsorbents for Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) ions from aqueous media.  相似文献   

3.
Conditions were studied for the stripping voltammetric determination of components of the Cd(II)-Pb(II)-Cu(II) system in aqueous solutions of (polyethylene imine)methylthiourea (PMT), the most efficient polymer complexant for the membrane preconcentration of heavy metal ions. It was shown that PMT significantly enhances the selectivity of determining Pb(II) and Cd(II) in solutions of Cu(II) by stripping voltammetry. Pb(II) and Cd(II) can be determined in the presence of up to 200- and 50-fold amounts of Cu(II), respectively. The limits of detection for Pb(II) and Cd(II) after a 40-s accumulation were 6.9 x 10-8 and 6.8 x 10-7 M, respectively.  相似文献   

4.
An EDTA‐bonded conducting polymer modified electrode was prepared and characterized by FT‐IR. The modified electrode was used for the selective electrochemical analysis of various trace metal ions such as, Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Fe(II), Cd(II), and Zn(II) at the different pHs by linear sweep and square wave voltammetry. Dynamic ranges were obtained using square wave voltammetry from 0.1 μM to 10.0 μM for Co(II), Ni(II), Cd(II), Fe(II), and Zn(II) and 0.5 nM to 20 nM for Cu(II), Hg(II), and Pb(II) after 10 min of preconcentration. The detection limits were determined to be 0.1 nM, 0.3 nM, 0.4 nM, 50.0 nM, 60.0 nM, 65.0 nM, 80.0 nM, and 90.0 nM for Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Cd(II), Fe(II), and Zn(II), respectively. The technique offers an excellent way for the selective trace determination of various heavy metal ions in a solution.  相似文献   

5.
Thioacetamide immobilized on silica gel was prepared via the Mannich reaction. The extraction and enrichment of copper(II), lead(II), and cadmium(II) ions from aqueous solutions has been investigated. Conditions for effective extraction are optimized with respect to different experimental parameters in both batch and column processes prior to their determination by flame atomic absorption spectrometry (FAAS). The optimum pH ranges for quantitative adsorption are 4.0-8.0, 2.0-7.0, and 5.0-10.0 for Pb(II), Cu(II), and Cd(II), respectively. Pb(II) and Cd(II) can be desorbed with 3 mol/L and 0.1 mol/L HCl/HNO3, and Cu(II) can be desorbed with 2.5% thiourea. The adsorption capacity of the matrix has been found to be 19.76, 16.35, and 12.50 mg/g for Pb(II), Cu(II), and Cd(II), respectively, with the preconcentration factor of approximately equal to 300 for Pb(II) and approximately equal to 200 for Cu(II) and Cd(II). Analytical utility is illustrated in real aqueous samples generated from distilled water, tap water, and river water samples.  相似文献   

6.
《Analytical letters》2012,45(5):1009-1021
Abstract

Application of morpholine dithiocarbamate (MDTC) coated Amberlite XAD‐4, for preconcentration of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II) by solid phase extraction and determination by inductively coupled plasma (ICP) atomic emission spectrometry (AES) was studied. The optimum pH values for quantitative sorption of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II), and Mn(II) were 6.5–8.0, 7.0–8.5, 6.0–8.5, 6.5–8.5, 7.5–9.0, and 8.0–8.5, respectively. The metals were desorbed with 2 mol L?1. The t1/2 values for sorption of metal ions were 2.6, 2.9, 2.5, 2.6, 3.0, and 3.8 min respectively for Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II). The effect of diverse ions on the determination of the previously named metals was studied. Simultaneous enrichment of the six metals was accomplished, and the method was applied for use in the determination of trace metal ions in seawater samples.  相似文献   

7.
Two new ligands 7-anthracenylmethyl-13-methylpyridyl-1,4,10-trioxa-7,13-diazacyclopentadecane (L4) and 7-anthracenylmethyl-13-(2,2-dimethyl-2-hydroxyethyl)-1,4,10-trioxa-7,13-diazacyclopentadecane (L(5)) have been synthesized and characterized. Both derive from 7-anthracenylmethyl-1,4,10-trioxa-7,13-diazacyclopentadecane (L(3)) and differ for having a differently functionalized pendant arm covalently attached to the remaining secondary nitrogen donor of the macrocyclic framework. The protonation and coordination behavior of L(4), L(5), and the unbranched L(3) with metal ions have been studied in MeCN/H2O (1:1 v/v, 298.1 K, I = 0.1 M) using potentiometric methods. The crystal structures of L(3), [(H2L(3))(HL(3))](ClO4)3, and the complex [CdL(3)(NO3)2] have been determined by single-crystal X-ray methods. The fluorescent behavior of L(3)-L(5) in the presence of Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) has been studied as a function of pH in MeCN/H2O (1:1 v/v). The presence of Cu(II), Hg(II), or Pb(II) does not affect the fluorescent behavior observed for the three free ligands upon changing the pH. Interestingly, the fluorescent emission of L(3) and L(5) is selectively enhanced only in the presence of Cd(II) at basic pH. The same effect is observed for L4 in the presence of Cd(II) or Zn(II) at about pH 7.  相似文献   

8.
Interactions between pyridine‐2,5‐dicarboxylic acid and Zn(II), Ni(II), Pb(II), Cd(II), and Cu(II) were characterized in aqueous solutions (20°C; I = 0.4 (KNO3)) by means of d.c.‐polarography, spectrophotometry, and 1H NMR spectroscopy. Polarography was used to determine the concentration of free metal ions in the presence of 10‐fold excess ligand in weakly alkaline solutions, and to determine stability constants for the Zn(II), Cd(II), and Cu(II) complexes with pyridine‐2,5‐dicarboxylic acid. 1H NMR spectroscopy was used to further characterize complex formation. © 2005 Wiley Periodicals, Inc. 16:285–291, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20123  相似文献   

9.
A new polychelatogen, AXAD-16-1,2-diphenylethanolamine, was developed by chemically modifying Amberlite XAD-16 with 1,2-diphenylethanolamine to produce an effective metal-chelating functionality for the preconcentration of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) and their determination by flame atomic absorption spectrometry. Various physiochemical parameters that influence the quantitative preconcentration and recovery of metal were optimized by both static and dynamic techniques. The resin showed superior extraction efficiency with high-metal loading capacity values of 0.73, 0.80, 0.77, 0.87, 0.74, and 0.81 mmol/g for Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The system also showed rapid metal-ion extraction and stripping, with complete saturation in the sorbent phase within 15 min for all the metal ions. The optimum condition for effective metal-ion extraction was found to be a neutral pH, which is a great advantage in the preconcentration of trace metal ions from natural water samples without any chemical pretreatment of the sample. The resin also demonstrated exclusive ion selectivity toward targeted metal ions by showing greater resistivity to various complexing species and more common metal ions during analyte concentration, which ultimately led to high preconcentration factors of 700 for Cu(II); 600 for Mn(II), Ni(II), and Zn(II); and 500 for Cd(II) and Pb(II), arising from a larger sample breakthrough volume. The lower limits of metal-ion detection were 7 ng/mL for Mn(II) and Ni(II); 5 ng/mL for Cu(II), Zn(II), and Cd(II), and 10 ng/mL for Pb(II). The developed resin was successful in preconcentrating metal ions from synthetic and real water samples, multivitamin-multimineral tablets, and curry leaves (Murraya koenigii) with relative standard deviations of < or = 3.0% for all analytical measurements, which demonstrated its practical utility.  相似文献   

10.
The dynamic adsorption and desorption properties, including the effect of pH value and flow rate on the adsorption, eluent acidity and volume, eluting velocity and re-use, of Cu(II), Pb(II), Zn(II), Cd(II), Mn(II), Ni(II), Co(II) and Hg(II) ions on the column loaded with poly(acrylaminophosphonic-carboxyl-hydrazide) chelating fiber were investigated. The recovery of Mn(II), Co(II), Cd(II), Ni(II) and Zn(II) ions in the presence of Na, K, Ca and Mg ions was examined. The preconcentration of trace amounts of Mn(II), Co(II), Cd(II), Ni(II) and Zn(II) ions from model solution samples was carried out with satisfactory results. The amount of the metal ions detected after preconcentration and recovery by this technique was basically in agreement with the added amount. The method is rapid, precise and simple. Received: 15 October 1997 / Revised: 17 March 1998 / Accepted: 20 March 1998  相似文献   

11.
The dynamic adsorption and desorption properties, including the effect of pH value and flow rate on the adsorption, eluent acidity and volume, eluting velocity and re-use, of Cu(II), Pb(II), Zn(II), Cd(II), Mn(II), Ni(II), Co(II) and Hg(II) ions on the column loaded with poly(acrylaminophosphonic-carboxyl-hydrazide) chelating fiber were investigated. The recovery of Mn(II), Co(II), Cd(II), Ni(II) and Zn(II) ions in the presence of Na, K, Ca and Mg ions was examined. The preconcentration of trace amounts of Mn(II), Co(II), Cd(II), Ni(II) and Zn(II) ions from model solution samples was carried out with satisfactory results. The amount of the metal ions detected after preconcentration and recovery by this technique was basically in agreement with the added amount. The method is rapid, precise and simple. Received: 15 October 1997 / Revised: 17 March 1998 / Accepted: 20 March 1998  相似文献   

12.
《Electroanalysis》2005,17(21):1970-1976
The oxidative electropolymerization of the (3‐pyrrol‐1‐ylpropyl)malonic acid monomer 1 is a simple and reproducible one‐step procedure for the synthesis of complexing polymer film modified electrodes, which have been applied to the electroanalysis of Cu(II), Pb(II), Cd(II) and Hg(II) ions by preconcentration upon complexation, followed by anodic stripping analysis. The detection limits were determined from square‐wave voltammetry at 0.5 nM, 5 nM, 50 nM and 0.2 μM for Pb(II), Cu(II), Hg(II) and Cd(II), respectively, after 10 min preconcentration. The modified electrodes showed a better selectivity toward copper(II) ions. Analysis of copper in a tap water sample agreed well with ICPMS analysis results.  相似文献   

13.
In this article, a new method that utilizes a diethyldithiocarbamate-modified nanometre TiO2 (TiO2–DDTC) as solid-phase extractant has been developed for simultaneous preconcentration of trace Cu(II), Pb(II), Zn(II), and Cd(II) prior to measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). The separation/preconcentration conditions of analytes, which include the effects of pH, sample flow rate and volume, elution conditions, and interfering ions on the recovery of the analytes, were investigated. At pH 5, the adsorption capacity of modified nanometre TiO2–DDTC was found to be 6.2, 19, 4.7, and 6.0?mg/g for Cu(II), Pb(II), Zn(II), and Cd(II), respectively. According to the definition of IUPAC, the detection limits (3σ) of this method for Cu(II), Pb(II), Zn(II), and Cd(II) were 0.41, 1.7, 0.39, and 0.52?ng/mL, respectively. The proposed method achieved satisfied results when applied to the determinations of trace Cu(II), Pb(II), Zn(II), and Cd(II) in biological and natural water samples.  相似文献   

14.
The amino acid sequence MxCxxC is conserved in many soft-metal transporters that are involved in the control of the intracellular concentration of ions such as Cu(I), Hg(II), Zn(II), Cd(II), and Pb(II). A relevant task is thus the selectivity of the motif MxCxxC for these different metal ions. To analyze the coordination properties and the selectivity of this consensus sequence, we have designed two model peptides that mimic the binding loop of the copper chaperone Atx1: the cyclic peptide P(C) c(GMTCSGCSRP) and its linear analogue P(L) (Ac-MTCSGCSRPG-NH2). By using complementary analytical and spectroscopic methods, we have demonstrated that 1:1 complexes are obtained with Cu(I) and Hg(II), whereas 1:1 and 1:2 (M:P) species are successively formed with Zn(II), Cd(II), and Pb(II). The complexation properties of the cyclic and linear peptides are very close, but the cyclic compound provides systematically higher affinity constants than its unstructured analogue. The introduction of a xPGx motif that forms a type II beta turn in P(C) induces a preorganization of the binding loop of the peptide that enhances the stabilities of the complexes (up to 2 orders of magnitude difference for the Hg complexes). The affinity constants were measured in the absence of any reducing agent that would compete with the peptides and range in the order Hg(II) > Cu(I) > Cd(II) > Pb(II) > Zn(II). This sequence is thus highly selective for Cu(I) compared to the essential ion Zn(II) that could compete in vivo or compared to the toxic ions Cd(II) and Pb(II). Only Hg(II) may be an efficient competitor of Cu(I) for binding to the MxCxxC motif in metalloproteins.  相似文献   

15.
Preconcentration/separation of Co(II), Fe(III), Pb(II), Cr(III), Cu(II) and Cd(II) ions using bis(5‐bromo‐2‐hydroxy‐benzaldehyde)‐2‐methyl‐1,5‐pentane diimine (BBHBPDI) on SDS coated alumina has been reported. The influences of the analytical parameters including pH, ligand and SDS amount, type and concentration of eluent and sample volume on metal ions recoveries were investigated. At optimum values of all variables the relative standard deviation are between 2.5–2.7 and preconcentration factor was 375, while recoveries for all understudy metal ions are higher than 95%, determination limits are between 1.5–2.7. The method has been successfully applied to determination of Co(II), Fe(III), Pb(II), Cr(III), Cu(II) and Cd(II) ions content in some real samples.  相似文献   

16.
Summary: Chelating resin [AFM] was synthesized by condensation of Anthranilic acid, Formaldehyde with m-Cresol. The chelating resin was characterized by FTIR Spectra, Elemental Analysis and SEM Photographs. The thermal behavior of the resin was characterized by TGA. The thermodynamic parameters such as Activation Energy (Ea), Order of decomposition (n), Entropy of decomposition (S*), Enthalpy (H*) and Free energy (G*) were calculated by Coats and Redfern method using TGA graph. The chelating behaviour of the prepared resin was studied out with using some metal ions [Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II)]. The sorption capacities of metal ions is found in the following order, Pb(II) < Zn(II) < Cd(II) < Cu(II) < Ni(II). The rate of half exchange was rapid t1/2 < 20 min for lead ion. The separation of binary mixtures [Cu(II) and Zn(II) in brass and Pb(II) and Cd(II)] was successfully carried out using Kd value.  相似文献   

17.
Wei Y  Yang R  Yu XY  Wang L  Liu JH  Huang XJ 《The Analyst》2012,137(9):2183-2191
We have demonstrated highly selective and sensitive detection of Pb(II) and Cd(II) using a highly selective adsorptive porous magnesium oxide (MgO) nanoflowers. The MgO nanoflower-modified glassy carbon electrode was electrochemically characterized using cyclic voltammetry; and the anodic stripping voltammetric performance of bound Pb(II) and Cd(II) was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The MgO nanoflower-modified electrode exhibited excellent sensing performance toward Pb(II) and Cd(II) that was never observed previously at bismuth (Bi)-based electrodes. Simultaneous additions of Pb(II) and Cd(II) were investigated in the linear range from 3.3 to 22 nM for Pb(II) and 40 to 140 nM for Cd(II), and detection limits of 2.1 pM and 81 pM were obtained, respectively. Some foreign ions, such as Cu(II), Zn(II) and Cr(III) do not interfere with the detection of Pb(II) and Cd(II). To the best of our knowledge, this is the first example of a highly adsorptive metal oxide with hierarchical micro/nanostructure that allows the detection of both Pb(II) and Cd(II) ions.  相似文献   

18.
Filho NL  Polito WL  Gushikem Y 《Talanta》1995,42(8):1031-1036
2-Mercaptobenzothiazole loaded on previously treated clay was prepared, characterized and used for sorption and preconcentration of Hg(II), Pb(II), Zn(II), Cd(II), Cu(II) and Mn(II) from an aqueous solution. The support used was a natural clay previously treated with sulphuric acid solution. Adsorption isotherms of metal ions from aqueous solutions as function of pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The chemically treated clay was very selective to Hg(II) in solution in which Zn(II), Cd(II), Pb(II), Cu(II) and Mn(II) were also present.  相似文献   

19.
The synthesis and characterization of two new macrocyclic ligands, the bis-macrocyclic compound 2,6-bis(1,4,13-triaza-7,10-dioxacyclopentadec-1-ylmethyl)phenol (L) and 38-methoxy-1,4,13,16,19,28-hexaaza-7,10,22,25-tetraoxatricyclo[14.14.7.1(32,36)]octatriconta-32,34,Delta(36,38)-triene (L1) are reported. Equilibrium studies of basicity and coordination properties toward metal ions such as Cu(II), Zn(II), Cd(II) and Pb(II) were performed for ligand by potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, I= 0.15 mol dm(-3)). L behaves as a hexaprotic base (logK(1)= 10.93, logK(2)= 9.70, logK(3)= 8.79, logK(4)= 8.05, logK(5)= 6.83, logK(6)= 2.55). All metal ions form stable mono- and dinuclear complexes: logK(MLH(-1))= 25.61 for Cu(II), 15.37 for Zn(II), 12.58 for Cd(II) and 13.79 for Pb(II); logK(M(2)LH(-1))= 31.61 for Cu(II), 23.38 for Zn(II), 24.49 for Cd(II) and 23.68 for Pb(II). All these dinuclear species show a great tendency to add the OH(-) group: the equilibrium constant for the addition reaction was found to be logK(M(2)LH(-1)OH)= 4.77 for Cu(II), 5.66 for Zn(II), 2.8 for Cd(II) and 3.18 for Pb(II). In the case of Ni(II), kinetic inertness prevents the possibility of solution studies. The dinuclear solid adducts [Ni(2)H(-1)L(N(3))(3)].EtOH and [Cu(2)H(-1)L(N(3))](ClO(4))(2) were characterized by X-ray analysis.  相似文献   

20.
Xie F  Lin X  Wu X  Xie Z 《Talanta》2008,74(4):836-843
The immobilization of gallic acid on the surface of amino group-containing silica gel phases for the formation of a newly chelating matrix (GASG) is described. The newly synthesized extractant, characterized by the diffuse reflectance infrared Fourier transformation spectroscopy and elemental analysis, was used to preconcentrate Pb(II), Cu(II), Cd(II) and Ni(II). The pH ranges for quantitative sorption and the concentrations of HCl for eluting Pb(II), Cd(II), Cu(II) and Ni(II) were opimized, respectively. The sorption capacity of the matrix has been found to be 12.63, 6.09, 15.38, 4.62mg/g for Pb(II), Cd(II), Cu(II) and Ni(II), respectively, with the preconcentration factor of approximately 200 ( approximately 100 for Cd(II)). The effects of flow rates, the eluants, the electrolytes and cations on the metal ions extraction, as well as the chelating matrix stability and reusability, were also studied. The extraction behavior of the matrix was conformed with Langmuir's equation. The present preconcentration and determination method was successfully applied to the analysis of synthetic metal mixture solution and river water samples. The 3sigma detection limit and 10sigma quantification limit for Pb(II), Cu(II), Cd(II) and Ni(II) were found to be 0.58, 0.86, 0.65, 0.92microg/L and 1.08, 1.23, 0.87, 1.26microg/L, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号