首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adsorptive collection of the molybdenum (VI) complexed with 2-(2-benzothiazolylazo)-p-cresol (BTAC) coupled with the catalytic current of the adsorbed complex at a static mercury drop electrode yields an ultrasensitive voltammetric procedure for the determination of molybdenum. Optimal experimental conditions were: a stirred acetate buffer 0.2 M (pH 3.5) as supporting electrolyte, a BTAC concentration of 1.0 x 10(-6) M as ligand, and a concentration of 0.1 M potassium nitrate as the oxidizing agent. In addition, a preconcentration potential of -0.080 V vs Ag/AgCl (3 M KCl), equilibration time of 15 s, a frequency of 30 Hz, a scan increment of 2 mV, a pulse amplitude of 0.050 mV, and a drop area of 0.032 cm2 were used. The cyclic voltammogram was recorded using a staircase wave with a scan rate of 100 mV/s. The forward scan starts at the initial potential of -0.080 V and is reversed at -0.90 V. Using the catalytic current at approximately -0.55 V the response to the Mo(VI) was found to be linear over a concentration range of 1.0-10.0 microg/L. The limit of detection is as low as 6.2 x 10(-10) M with 4 min of preconcentration time. The possible interference of other trace ions was investigated. The merits of this procedure are demonstrated using of reference samples.  相似文献   

2.
《Analytical letters》2012,45(5):905-918
ABSTRACT

A new method is described for the determination of cobalt based on the square wave adsorptive stripping voltammetry of Co(II) complexed with hydroxynaphthol blue (HNB) at the static mercury drop electrode. Optimal conditions were found to be: preconcentration potential, -0.500V vs. Ag/AgCl (KCl 3M); preconcentration time, 30 s (with stirring); pulse height, 50 mV; frequency, 100 Hz; scan increment, 4 mV; step time, 0.010 s; supporting electrolyte, HEPES/HCl (0.1 M, pH 7.0-8.0) or triethanolamine/HCl (0.1 M, pH 7.6); concentration of hydroxynaphthol blue, 5.0 × 10?6 M. The response of the system was found to be linear in a range of Co(II) concentrations from 2.0 to 10.0 μg/L. The limit of detection was found to be 1.8 × 10?9 M with 2 minutes of preconcentration time. The effect of various potential interferences were also studied including a variety of cations, anions and organic surfactants. The interferences by Ni(II), and Cr(VI) may be eliminated by addition of EDTA or CDTA and the of Fe(III) and Ti(IV) by fluoride. The merits of the procedure were demonstrated in the analysis of certified and biological samples.  相似文献   

3.
Preconcentration is achieved by adsorption of a palladium-dimethylglyoxime complex on a hanging mercury drop electrode. Optimal conditions area stirred acetate buffer solution (pH 5.15) containing 2 × 10?4 M dimethylglyoxime and an accumulation potential of —0.20 V. The height of the stripping peak in a negative-going linear scan is linearly dependent on palladium concentration and preconcentration time (over the ranges 0–16 μg l?1 and 0–300 s, respectively). For a 10-min preconcentration time, the detection limit is 20 ng l?1 (2.1 × 10?10 M). Possible interferences by other trace metals are investigated. Palladium added to seawater samples was easily quantified.  相似文献   

4.
Molybdenum(VI) in seawater is determined by means of potentiostatic adsorption of the 8-quinolinol complex onto a mercury film electrode at ?0.2 V vs. SCE and subsequent reduction of the complex by means of constant-current stripping in 5 M calcium chloride medium with a fully automated stripping analyzer. A single stripping peak at –0.42 V vs. SCE was obtained. The molybdenum(VI) concentration in reference seawater NASS-1, with a certified value of 11.5 ± 1.9 μg 1?1, was found to be 8.9 ± 1.3 μg 1?1 (n = 10).  相似文献   

5.
Folic acid can be determined at nanomolar concentrations by controlled adsorptive accumulation of folic acid on a static mercury drop electrode held at ?0.3 V vs. Ag/AgCl followed by reduction of the surface species. In 0.1 M sulfuric acid, a cathodic scan gives peaks at ?0.47 v and ?0.75 V vs. Ag/Agcl; the latter peak provides greater sensitivity. Differential-pulse stripping is shown to be superior to normal-pulse and d.c. stripping. After a 5-min preconcentration, the detection limit is about 1 × 10?10 M folic acid. The adsorptive stripping response is evaluated with respect to concentration dependence, preconcentration time and potential, solution acidity and the presence of gelatin and bromide. The relative standard deviation at the 5 × 10?8 M level is 1.2%. This method is applied to the determination of folic acid in pharmaceutical tablets.  相似文献   

6.
Since to the best of our knowledge, there is no potentiometric sensors based on carbon paste electrodes were proposed for the potentiometric determination of molybdenum(VI) ion. In this study, 2,2′-(propane-1,3-diylbis(oxy))dibenzoic acid (PBODBA) was synthesized and used as modifier in the fabrication of carbon paste electrode (CPE) for the quantification of molybdenum(VI). The developed electrodes I and II showed hexavalent Nernstian response of 9.80±0.05 and 9.90±0.08 mV decade−1 over the concentration ranges of 1.0×10−7–1.0×10−3 and 1.0×10−8–1.0×10−3 mol L−1, respectively. The electrodes showed good selectivity for Mo(VI). The modified electrodes were applied for the determination of Mo(VI) concentration in masscuaje agricultural fertilizer and spiked juice extractions containing several metals.  相似文献   

7.
Linear sweep voltammograms of Lumogallion IREA (pH 2), Magneson IREA (pH 2), 4-(2-pyridylazo)resorcinol (pH 4.8), and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (pH 4.8) in the presence of molybdenum(VI) exhibit peaks at potentials more negative than the potentials of reduction peaks of the reagents by approximately 0.1 V. In all of the above cases, the heights of these peaks linearly increased with an increase in the concentration of molybdenum(VI) in the range from 5 x 10-7 to 2.5 x 10-6 M; thus, these peaks can be used for the determination of molybdenum. The simultaneous proportional decrease in the heights of the cathodic peaks of the reagents can be used for indirect determination of molybdenum(VI). The limits of detection without preliminary accumulation at a dropping mercury electrode with a drop time of 5 s are (1.5-3.9) x 10-7 M, depending on the nature of the reagent and the technique used for determining the concentration.  相似文献   

8.
The optimum conditions of electrolyte composition and pH were studied for the cathode ray polarography (c.r.p.) of the catalytic molybdenum(VI) wave; 1–2 M potassium nitrate at pH 1.6–2.2 is optimum, the detection limit is 3 × 10-9 M (0.3 ppb) molybdenum(VI). Equal molar concentrations of foreign electroactive substances do not interfere at the potential of the molybdenum wave and 500-fold amounts of these can be tolerated if their c.r.p. peaks are separated from the molybdenum wave by 0.1 or 0.2 V. Similar conditions were used for the differential pulse polarography of the catalytic wave. The detection limit is 2 × 10-8 M (2 ppb). being limited in part by lead impurities which contribute to the background.  相似文献   

9.
《Analytical letters》2012,45(10):1929-1939
Abstract

This paper describes an electrochemical stripping procedure for ultratrace measurements of iron, in which preconcentration is achieved by the adsorption of a iron-[2-thiazolylazo)-4- methyl phenol] complex onto a static mercury drop electrode Cyclic voltammetry was used to characterize the interfaciai and redox behavior. For a 5 minute preconcentration time, the detection limit found was 1.8 × 10?0mol/1. Optimum experimental conditions were found by the use of a stirred triethanolamine (pH 8.6) solution with 2-[2-thiazolylazo- 4- methyl phenol] concentration of 1.0 × 10?5 mol/1, a preconcentration potential of ?0.46V and linear scan mode. With preconcentration for 30 sec., calibration plots for iron are linear for the 5–29 μ g/1 range. Possible interferences by masking agents and several trace ions have been investigated. The interference of copper and uranium are eliminated by addition of CyDTA and carbonate ion respectively. Simultaneous determination of iron with copper and nickel is possible. The merits of the aforementioned procedure are demonstrated in the analysis of fresh water.  相似文献   

10.
《Analytical letters》2012,45(7):1327-1338
ABSTRACT

This article presents a method for determination of titanium in quartz and silica glass samples based on adsorptive stripping voltammetry (AdSV) with mandelic acid. Hanging mercury drop electrode as a working electrode was used. The optimized conditions include: pH 3.3, accumulation potential –0.15 V, accumulation time 90 s, scan rate 10 mV/s, pulse amplitude 25 mV. In case of 5 min accumulation time the obtained detection limit was 6.5×10-9 mol/L Ti. ET-AAS was applied as a reference method to AdSV measurements. The procedure for decomposition of quartz and silica glass samples applying small amount of acids is described.  相似文献   

11.
Molybdenum(VI) is determined by anodic stripping voltammetry using a carbon paste electrode modified in situ with cetyltrimethylammonium bromide (CTAB). The preconcentration of molybdenum is performed by adsorption and reduction of ion-pairs of cetyltrimethylammonium and molybdenum(VI) oxalate at a potential of −0.4 V vs. the saturated calomel electrode (SCE). The supporting electrolyte contains 0.01 M oxalic acid and 0.075 mM CTAB. Differential pulse anodic stripping voltammetry exploiting the reoxidation signal is used for the determination of trace levels of molybdenum(VI). Linearity between current and concentration exists for a range of 0.5–500 μg 1−1 Mo with proper preconcentration times; the limit of detection (calculated as 3σ) is 0.04 μg 1−1 with an accumulation period of 10 min.  相似文献   

12.
The application of electrodes modified by tri-n-octylphosphine oxide (TOPO) to the determination of uranium in aqueous solutions is investigated. Selective preconcentration of uranium(VI) by chemical reaction with the modifying molecule is followed by cyclic voltammetry. A hanging mercury drop electrode (HMDE) can be modified easily but the reproducibility of results is not good. When a TOPO-modified glassy carbon electrode is used, uranium(VI) can be preconcentrated from stirred solutions, and the cathodic voltammograms show an increase of current or a peak at about -0.75 V vs. SCE, depending on the uranium concentration of the solution. The effects of preconcentration time, pH and electrode potential during the preconcentration are discussed. The detection limit is in the 10-9 M range for 45 min of preconcentration. The procedure is fairly selective for uranyl ions, but oxidizing agents interfere. Some tests on sea water are reported.  相似文献   

13.
Polarographic (d.c.) measurements showed that complex ions of uranium(VI) with catechol adsorb on the dropping mercury electrode. This effect is used to determine uranium(VI) directly in sea water. Optimal conditions include pH 6.8, 2 × 10?3 M catechol, and a collection potential between ?0.1 and ?0.4 V (vs. Ag/AgCl) at a hanging mercury drop electrode. The cathodic scan is made with the linear-scan or differential-pulse mode (d.p.c.s.v.). The detection limit with the d.p.c.s.v, mode is 3 × 10?10 M after a collection period of 2.5 min. Between pH 6 and 8, the peak height increases with pH and with catechol concentration up to 5 × 10?3 M. There is linear relationship between the collection time and the measured peak height until the drop surface becomes saturated. With a collection period of 3 min, the reduction current increases linearly with the metal concentration up to about 5 × 10?3 M U(VI). The maximum adsorption capacity of the mercury drop is 4.4 × 10?10 mol cm2; each complex ion then occupies 0.38 nm2, equivalent to the size of about one catechol molecule. Interference by high concentrations of Fe(III) is overcome by selectively adsorbing U(VI) at a collection potential near the reduction potential of Fe(III). Organic surfactants reduce the peak height for uranium by up to 75% at unnaturally high concentrations only (4 mg l?1 Triton X-100). Competition by high concentrations of Cu(II) for space on the surface of the drop is eliminated by addition of EDTA.  相似文献   

14.
Adsorptive stripping voltammetry provides sensitive determinations of trace amounts of the saccharide-related antibiotics, streptomycin, erythromycin and novobiocin. A static mercury drop electrode is immersed in a stirred alkaline solution of the drug for a fixed time (60–300 s) at a suitable potential, and the adsorbed species is then stripped in the linear-scan or differential-pulse mode. The preconcentration potentials and stripping peak potentials (vs. Ag/AgCl) are, respectively, ?1.0 V and ?1.58 V for streptomycin, ?0.9 V and ?1.2 V for erythromycin, and ?1.0 V and ?1.38 V for novobiocin. The interfacial behavior is discussed. Short preconcentration periods suffice to quantity streptomycin, novobiocin, and erythromycin down to the 7 × 10?10 M, 2.5 × 10?9 M, and 1.3 × 10?8 M levels, respectively. Streptomycin added to urine can be quantified after simple dilution.  相似文献   

15.
《Analytical letters》2012,45(12):2483-2496
Abstract

The electrochemical behavior of 9‐phenanthrol in the presence of copper (II) at a static mercury drop electrode was investigated to provide the basis for development of an inexpensive, sensitive, and reliable method for determination of polycyclic aromatic hydrocarbon (PAH) metabolites in biological matrices. Optimum experimental conditions for analytical applications were obtained in 0.005 M NaOH solution using an accumulation potential of ?0.25 V, a scan rate of 5 mV. s?1, a pulse height of 25 mV, and a differential pulse scan mode. The response of 9‐phenanthrol is linear over the concentration range 1.0–12.0 ppb. For an accumulation time of 5 minutes, the detection limit was found to be 0.2 ppb (1.03×10?9 M). The more convenient relation to measure the 9‐phenanthrol in the presence of copper and other metals was also investigated. The utility of the method was demonstrated by the presence of 9‐phenanthrol in samples of sea water and human urine. Cyclic voltammetry was used to characterize the interfacial and redox behavior.  相似文献   

16.
《Analytical letters》2012,45(14):2693-2707
Abstract

In the present work, an adsorptive cathodic stripping voltammetric method using a hanging mercury drop electrode (HMDE) was described in order to determine the ultra trace of lead ions with carbidopa in different real samples. The method is based on accumulation of lead metal ion on mercury electrode using carbidopa as a suitable complexing agent. The potential was scanned to the negative direction and the differential pulse stripping voltammograms were recorded. The instrumental and chemical parameters were optimized. The optimized conditions were obtained in pH of 8.4, carbidopa amount of 1.0×10?6 M, accumulation potential of 0. 0 V, accumulation time of 100 s, scan rate of 100 mV/s and pulse height of 50 mV. The relationship between the peak current versus concentration was linear over the range of 2.4×10?10–4.8×10?7 M. The limits of detection were 5.8×10?11 M and the relative standard deviation at 4.8×10?10, 2.1×10?8, and 2.4×10?7 M of lead ion were obtained 3.2, 2.9, and 2.7%, respectively (n=7).  相似文献   

17.
A novel electrochemical stripping approach for the trace measurement of manganese is presented. The metal chelate with erichrome black T is adsorbed on a hanging mercury drop electrode, and the subsequent reduction current of the accumulated chelate is measured by voltammetry. Adsorptive preconcentration for 5 min results in a detection limit of 6 × 10?10 M (32 l?1). Cyclic voltammetry is used to characterize the redox and interfacial processes. Optimal experimental conditions include a 0.02 M piperazine-N,N′-bis(2-ethanesulfonic acid) solution (pH 12) containing 1 × 10?6 M eriochrome black T, a preconcentration potential of ?0.80 V, and a linear potential scan. The response is linear up to 2.9 × 10?7 M, and the relative standard deviation at 1.8 × 10?7 M is 1.5%. The effects of possible interferences from metal ions or organic surfactants are evaluated.  相似文献   

18.
The association of molybdenum(VI) oxyanions with metal cations was investigated in solutions of low ionic strength, such as those prevailing in most natural waters. Potentiometric titrations were carried out for the systems containing molybdenum(VI) anions and divalent metal cations (M = Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg and Pb). This selection includes the major cations and some other cations of high environmental relevance. The interaction of iron(III) with Mo(VI) anions was also studied. At neutral and basic pH values and for those systems where the solubility of the molybdate salt is high enough, ionic species pairs such as [M(MoO4)] predominate. At acidic pH values, [M(HMoO4)]+ and [M(Mo7O24)]4– are formed, the latter species are only relevant for total molybdenum concentrations higher than 1 mmol·L?1. These results provide the basis for molybdenum speciation in natural aquatic systems, on which the environmental fate, bioavailability and toxicity of the element depend.  相似文献   

19.
Simple, rapid, sensitive and low cost voltammetric method for simultaneous determination of acetazolamide and theophylline in pharmaceutical formulations, was developed using a static mercury drop electrode (SMDE). Well-defined voltammetric peaks were obtained at–0.87 and–1.33 V for acetazolamide and–0.21 V (vs. Ag/AgCl) for theophylline in Britton–Robinson (B–R) buffer (pH 2.4). The reduction peak currents are found to be linearly dependent on the concentration for the both drugs. Calibration graphs were obtained over the concentration range 1.98 × 10–6 to 5.94 × 10–5 M and 2.0 × 10–5 to 5.6 × 10–4 M for acetazolamide and theophylline, respectively. The limits of detection (LOD) and quantitation (LOQ) of the procedure were also presented. Factors such as, pH of supporting electrolyte, equilibrium time, frequency, scan rate and pulse height were optimized. The validated voltammetric method was successfully applied for simultaneous determinations of the two drugs. The procedure does not require any sample pretreatment or timeconsuming separation steps.  相似文献   

20.
《Analytical letters》2012,45(7):1128-1143
Abstract

The spectrophotometric behavior of uranium (VI) with L-3-(3, 4-dihydroxy phenyl) alanine (LDOPA) reagent revealed that the uranium can form a ML2 complex with LDOPA in solution. Thus a highly sensitive adsorptive stripping voltammetric protocol for measuring of trace uranium, in which the preconcentration was achieved by adsorption of the uranium-LDOPA complex at hanging mercury drop electrode (HMDE), is described. Optimal conditions were found to be a 0.02 M ammonium buffer (pH 9.5) containing 2.0 × 10?5 M (LDOPA), an accumulation potential of ? 0.1 V (versus Ag/AgCl) and an accumulation time of 120 sec.

The peak current and concentration of uranium accorded with linear relationship in the range of 0.5–300 ng ml?1. The relative standard deviation (at 10 ng ml?1) is 3.6% and the detection limit is 0.27 ng ml?1. The interference of some common ions was studied. Applicability to different real samples is illustrated. The attractive behavior of this reagent holds great promise for routine environmental and industrial monitoring of uranium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号