首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(4):582-592
Abstract

A new type of gold nanoparticles–attached indium tin oxide electrode was made. By SEM and EDS, the as‐prepared gold nanoparticles–modified ITO electrode was characterized. This modified electrode has been used for the determination of pirarubicin (THP) in urine by cyclic voltammetry. Compared to a bare ITO electrode, the modified electrode exhibited a marked enhancement in the current response. Liner calibration curves are obtained in the range 5×10?9mol/L~1.5×10?6 mol/L with a detection limit of 1×10?9 mol/L. The percentage of the recoveries ranged from 99.3% to 106.3%. The practical analytic utility of the method is illustrated by quantitative determination of THP in urine.  相似文献   

2.
A novel method for the determination of ephedra alkaloids (methylephedrine and pseudoephedrine) was developed by electrophoresis capillary (CE) separation and electrochemiluminesence detection (ECL). The use of ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate, BMIMBF4) improved the detection sensitivity markedly. The conditions for CE separation, ECL detection and effect of ionic liquid were investigated in detail. The two ephedra alkaloids with very similar structures were well separated and detected under the optimum conditions. The limits of detection (signal‐to‐noise ratio = 3) in standard solution were 1.8 × 10–8 mol/L for methylephedrine (ME) and 9.2 × 10–9 mol/L for pseudoephedrine (PSE). The limits of quantitation (signal‐to‐noise ratio = 10) in human urine samples were 2.6 × 10?7 mol/L for ME and 3.6 × 10–7 mol/L for PSE. The recoveries of two alkaloids at three different concentration levels in human urine samples were between 81.7 and 105.0%. The proposed method was successfully applied to the determination of ME and PSE in human urine and the monitoring of pharmacokinetics for PSE. The proposed method has potential in therapeutic drug monitoring and clinical analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A simple, reliable and reproducible method, based on capillary zone electrophoresis with amperometric detection, has been developed for the determination of idarubicin in human urine. A carbon disk electrode was used as working electrode. The optimal conditions of separation and detection were pH 5.6 phosphate buffer (0.20 mol/L), 22 kV for the separation voltage and 1.00 V (vs. Ag/AgCl, 3 mol/L KCl) for the detection potential. The linear range was from 4.0 x 10(-7) to 2.0 x 10(-5) mol/L with a regression coefficient of 0.9986, and the detection limit was 8.0 x 10(-8) mol/L. The method was directly applied to the determination of idarubicin in spiked human urine without any other sample pretreatment except filtration, and the assay results were satisfactory.  相似文献   

4.
A novel and sensitive method for the simultaneous determination of enoxacin and ofloxacin has been established using capillary electrophoresis (CE) coupled with electrochemiluminescence (ECL) detection based on the ECL enhancement of tri(2,2‐bipyridyl)ruthenium(II). The conditions for sample solvent type, CE separation and ECL detection were investigated systematically. The analytes were well separated and detected within 7 min. The limits of detection (S/N = 3) of enoxacin and ofloxacin are 9.0 × 10?9 and 1.6 × 10?8 mol/L, respectively. The precisions (RSD%) of intraday and interday are less than 2.1 and 4.0%, respectively. The limits of quantitation (S/N = 10) of enoxacin and ofloxacin are 3.2 × 10?7 and 5.4 × 10?7 mol/L in human urine samples and 4.1 × 10?7 and 6.9 × 10?7 mol/L in human serum samples, respectively. The recoveries of enoxacin and ofloxacin at different concentration levels in human urine, serum and eye drop samples are between 94.0 and 106.7%. The proposed method was successfully applied to the determination of the enoxacin and ofloxacin in human urine, serum and eye drop samples and the monitoring of pharmacokinetics of ofloxacin in human body. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
《Electroanalysis》2006,18(3):291-297
Selected from a series of structurally related heteroaromatic thiols, a newly synthesized reagent 2‐amino‐5‐mercapto‐[1,3,4] triazole (MATZ) was used to fabricate self‐assembled monolayers (SAMs) on gold electrode for the first time. The MATZ/Au SAMs was characterized by electrochemical methods and scanning electronic microscopy (SEM). In 0.04 mol/L Britton–Robinson buffer solution (pH 5), the electrochemical behavior of dopamine showed a quasireversible process at the MATZ/Au SAMs with an electrode kinetic constant 0.1049 cm/s. However, the electrochemical reaction of uric acid at the SAMs electrode showed an irreversible oxidation process, the charge‐transfer kinetics of uric acid was promoted by the SAMs. By Osteryoung square‐wave voltammetry (OSWV), the simultaneous determination of dopamine and uric acid can be accomplished with an oxidation peak separation of 0.24 V, the peak current of dopamine and uric acid were linearly to its concentration in the range of 2.5×10?6–5.0×10?4 mol/L for dopamine and 1×10?6–1×10?4 mol/L for uric acid with a detection limit of 8.0×10?7 mol/L for dopamine and 7.0×10?7 mol/L for uric acid. The MATZ/Au SAMs electrode was used to detect the content of uric acid in real urine and serum sample with satisfactory results.  相似文献   

6.
A new voltammetric procedure for the simultaneous determination of dopamine (DA) and paracetamol (PA) using boron doped diamond electrode modified with Nafion and lead films (PbF/Nafion/BDDE) was investigated. The use of this electrode resolved the overlapped voltammetric waves of DA and PA into well‐defined peaks with peak to peak separation of about 320 mV. Under the optimized experimental conditions in differential pulse voltammetric technique, DA and PA gave a linear response over the ranges 2.0×10?7–1.0×10?4 mol L?1*(R2=0.9996) and 5.0×10?7–1.0×10?3 mol L?1 (R2=0.9979), respectively. The detection limits were found to be 5.4×10?8 mol L?1 for DA and 1.4×10?7 mol L?1 for PA. They are lower, comparable or in some cases a little bit higher than those obtained using other electrochemical sensors. However, the proposed procedure of the sensor preparation is much simpler than procedures described in the literature with a lower detection limit. The proposed procedure was successfully applied to the determination of PA in some commercial pharmaceuticals as well as to the simultaneous determination of DA and PA in human urine, whole blood and serum samples directly without any separation steps.  相似文献   

7.
《Analytical letters》2012,45(6):1165-1173
Abstract

The polarographic behavior of the complex of iron–4– (2–pyridylazo) resorcin(PAR) was studied. In HAc– NaAc– EDTA buffer solution, the complex can be adsorped on a hanging mercury drop electrode giving a sensitive adsorptive complex reduction peak with a peak potential at -0.36V(vs. SCE). Optimum experimental conditions were found by the use of 0.08mol/L HAc, 0.06mol/L NaAc, 5.0 × 10?3mol/L EDTA and 1.0 × 10?5mol/L PAR. With preconcentration for 60s, the derivative peak height of the complex compound is linearly proportional to the concentration for Fe in the range from 1.0 × 10?9mol/L to 1.0 × 10?7mol/L. For a 2–min pre–concentration time, the detection limit found was 2.0 × 10?10mol/L. This method has high sensitivity and selectivity. It has been applied to the determination of trace iron in food and water samples without any pre–separation step.  相似文献   

8.
《Electroanalysis》2005,17(18):1675-1680
We developed a sensitive, simple and low cost method to determine methimazole based on capillary electrophoresis with electrochemical detection (CE‐EC) at a carbon fiber microdisk electrode (CFE). We investigated the effects of detection potential, the concentration and pH value of the phosphate buffer, and injection time as well as separation voltage on the detection of methimazole. Under the optimized conditions: the detection potential at 1.30 V, 10 mmol/L phosphate buffer (pH 7.0), injection time 30 s at a height of 20 centimeter and separation voltage at 15 kV, the linear range was obtained from 1.0×10?7 to 2.0×10?4 mol/L, covering 3 orders of magnitude with a correlation coefficient of 0.9995. The LOD (S/N=3) obtained was 5.0×10?8 mol/L. The RSD of migration time and peak current for 2.0×10?4 mol/L methimazole was 1.04% and 1.54% (n=10), respectively. The method was also used to analyze methimazole tablets and human urine sample.  相似文献   

9.
A simple and sensitive capillary electrophoretic method was developed for the separation and determination of sodium methyldithiocarbamate (metham), manganese ethylenebisdithiocarbamate (maneb) and ethyl xanthate in boric acid buffer by direct UV absorbance detection at λ = 254 nm. The separation is dependent on pH and nature of the buffer. The detection limits (S/N = 3) are 1.7 × 10–6 mol/L for ethyl xanthate, 1.3 × 10–6 mol/L for metham and 2.1 × 10–6 mol/L for maneb. The method has been successfully applied to the analysis of wheat samples spiked with maneb and in a commercial sample.  相似文献   

10.
A sensitive method for simultaneous determination of azithromycin (AZI), acetylspiramycin (ACE), erythromycin (ERY), and josamycin (JOS) was developed by CE coupled with electrochemiluminescence detection with Ru(bpy)32+. The parameters related to separation and detection were investigated in detail. The four macrolides were well separated and detected within 6 min under the optimized conditions. The LOD (S/N=3) of AZI, ACE, ERY, and JOS were 1.2×10?9, 7.1×10?9, 3.9×10?8 and 9.5×10?8 mol/L, respectively. The LOQ (S/N=10) of AZI, ACE, ERY, and JOS in human urine were 8.2×10?8, 2.5×10?7, 8.9×10?7 and 1.2×10?6 mol/L, respectively. The recoveries of the four macrolides in human urine and pharmaceutical tablet samples were 85.0–104.0% at different concentration levels.  相似文献   

11.
The electrochemical behavior of nandrolone phenylpropionate (NP) at a hanging mercury drop electrode (HMDE) was investigated. The adsorption phenomena were observed by linear sweep voltammetry in NaOH. The electrode reaction was found to be a totally irreversible reduction of the adsorbed NP. In 1 × 10−7 mol/L NaOH, the detection limit and the linear range are 5 × 10−10 and 8 × 10−10–5 × 10−7 mol/L, respectively. The relative standard deviation of the method is 1.6 % for 1.7 × 10−7 mol/L NP. The method was applied to the determination of NP in clinical ampuls.  相似文献   

12.
A novel and simple method is presented for the determination of norfloxacin, ciprofloxacin, and ofloxacin by capillary electrophoresis with chemiluminescence detection. This method is based on the enhancing effect of quinolones on the chemiluminescence reaction of the Ce(SO4)2–Ru(bpy)32+–HNO3 system. Three quinolones were successfully separated and detected under optimum conditions. The obtained detection limits were 2.3×10–7 mol/L, 5.2×10–8 mol/L, and 7.8×10–8 mol/L for ciprofloxacin, norfloxacin, and ofloxacin, respectively. The RSD of migration time and peak area were less than 1.8 and 3.8% (n = 5), respectively. The applicability of the proposed method was illustrated in the determination of ofloxacin in eye drops and of norfloxacin in human urine samples, and the monitoring of pharmacokinetics for norfloxacin.  相似文献   

13.
《Electroanalysis》2003,15(10):898-902
A method based on capillary electrophoresis (CE) with electrochemical detection (ED) was developed for the determination of taurine in Lycium Barbarum L., LIPOVIYAN beverage and milk powder. The effects of some important factors such as the acidity of the running buffer, separation voltage, injection time, and applied potential to working electrode were investigated. Operated in a wall‐jet configuration, a 300 μm diameter carbon‐disk electrode was used as the working electrode, which exhibits good responses at +1.05 V (vs. SCE) for taurine. Excellent linearity was obtained in the concentration range from 5.0×10?4 mol/L to 5.0×10?6 mol/L. The detection limit (S/N=3) was 1.0×10?7 mol/L. This proposed method has been successfully applied to analyze the actual samples with satisfactory assay results.  相似文献   

14.
A rapid and sensitive method based on transient ITP and field enhancement in CE with electrochemical detection at copper disk electrode was developed for the simultaneous separation and determination of three estrogens: estrone, 17β‐estradiol, and estriol. The effects of several important factors that influence the separation and detection were investigated. Under the optimum conditions, the estrogens could be separated in 0.06 mol/L sodium hydroxide solution within 14 min. With transient ITP by addition of 0.5% NaCl, a good linear response was obtained for three estrogens from 0.2 to 10 μmol/L, with correlation coefficients higher than 0.9993. The detection limits were 8.9 × 10?8, 6.7 × 10?8, and 1.1 × 10?7 mol/L (S/N = 3) for estriol, 17β‐estradiol, and estrone, respectively. This method was successfully employed to analyze different water samples from waterworks, tap water, fishpond, and river samples with recoveries in the range of 90.8–108.9%, and RSDs < 4.69%. The satisfied results demonstrated that this method was of convenient preparation, high sensitivity, and good repeatability, which could be applied to the rapid determination of environmental water samples.  相似文献   

15.
A highly sensitive electrochemical biosensor for the detection of trace amounts of 8‐azaguanine has been designed. Double stranded (ds)DNA molecules are immobilized onto a glassy carbon electrode surface with Langmuir–Blodgett technique. The adsorptive voltammetric behaviors of 8‐azaguanine at DNA‐modified electrode were explored by means of cyclic voltammetry and square wave voltammetry. Compared with bare glassy carbon electrode (GCE), the Langmuir–Blodgett film modified electrode can greatly improve the measuring sensitivity of 8‐azaguanine. Under the optimum experimental conditions, the Langmuir–Blodgett film modified electrode in pH 3.0 Britton–Robinson buffer solutions shows a linear voltammetric response in the range of 5.0×10?8 to 1.0×10?5 mol L?1 with detection limit 9.0×10?9 mol L?1. The method proposed was applied successfully for the determination of 8‐azaguanine in diluted human urine with wonderful satisfactory.  相似文献   

16.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

17.
In this paper, a pre‐anodized inlaying ultrathin carbon paste electrode (PAIUCPE) with 316L as a matrix was constructed by a simple and fast electrochemical pretreatment. Using xanthine (Xa) and hypoxanthine (HXa) as the target compounds, the pH effects compositions of buffer solution, the accumulation times, hydrogen bond catalysis, degree of auxiliary electrode reaction on the size of peak currents (Ip) of Xa and HXa was discussed in detail. Also, it was proposed that Xa and HXa were respectively absorbed at the surface of PAIUCPE through hydrogen bonding. The influencing mechanisms of the PAIUCEP on electrochemical oxidation of Xa and HXa were explained in detail. Moreover, the linear relationships for the Xa and HXa were obtained in the range of 6×10?8–3×10?5 mol/L and 2×10?7–7×10?5 mol/L, respectively. The detection limits for the Xa and HXa were 1.2×10?8 mol/L and 5.7×10?8 mol/L, respectively. Moreover, this proposed method could be applied to determine the Xa and HXa in human urine simultaneously with satisfactory results.  相似文献   

18.
《Analytical letters》2012,45(2):361-372
Abstract

A novel method to determinate inositol based on the electrocatalytic oxidation of inositol on the surface of a nickel hexacyanoferrate (NiHCF)–modified electrode was reported. The determination of inositol can be performed in the range of 1.0×10?4 to 5.8×10?3 mol/L with a detection limit of 5.0×10?5 mol/L.  相似文献   

19.
In this paper, CE coupled with electrochemiluminesence (ECL) detection using a 76‐μm Pt disk as working electrode was developed for nicotine (NIC) determination. The major metabolite of NIC is cotinine (COT), which has a similar tertiary amine structure to NIC. However, there is a carbonyl group attached in the structure of COT, which leads to the great decrease in ECL response. In order to improve the ECL response of COT, NaBH4 was used for carbonyl reduction. After reduction, NIC and COT were separated and detected by CE‐ECL. ECL response plotted with NIC concentration was linear between 5.0×10?7 and 5.0×10?5 mol/L (81–8100 μg/L), with LOD of 5.0×10?8 mol/L (8.1 μg/L). The developed CE‐ECL method was applied for NIC determination in urine and cigarette samples.  相似文献   

20.
An ionic liquid N‐hexylpyridinium hexafluorophosphate (HPPF6) modified carbon paste electrode was fabricated for the sensitive voltammetric determination of adenosine in this paper. Carbon ionic liquid electrode (CILE) was prepared by mixing graphite powder and HPPF6 together and the CILE was characterized by scanning electron microscopy (SEM) and electrochemical methods. The electrochemical behaviors of adenosine on the CILE were studied carefully. Compared with the traditional carbon paste electrode (CPE), a small negative shift of the oxidation peak potential appeared with greatly increase of the oxidation peak current, which indicated the presence of ionic liquid in the carbon paste not only as the binder but also as the modifier and promoter. Under the optimal conditions the oxidation peak current increased with the adenosine concentration in the range from 1.0×10?6 mol/L to 1.4×10?4 mol/L with the detection limit of 9.1×10?7 mol/L (S/N=3) by differential pulse voltammetry. The proposed method was applied to the human urine samples detection with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号