首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The buckling behavior of perfect and defective double-walled carbon nanotubes (DWCNTs) under axial compressive, torsional and bending loadings is investigated using a structural mechanics model. The effects of van der Waals (vdW) forces are further modeled using a nonlinear spring element. Critical buckling loads, critical buckling moments and the effects of vacancy defects were studied for armchair nanotubes with various aspect ratios. The results show that vacancy defects greatly reduce the critical buckling load of DWCNTs. The density of defects plays an important role in buckling of DWCNTs. The results of this numerical model are in good agreement with their comparable existing works.  相似文献   

2.
The problem of nonlinear deformation and buckling of noncircular cylindrical shells under combined loading is solved by the variational finite-element method in the displacement formulation. A numerical algorithm for solving the problem is proposed. Stability of cylindrical shells with an elliptic cross-sectional contour under a combined action of torsion and bending is analyzed. The effect of cross-sectional ellipticity and nonlinear prebuckling deformation on the critical loads and buckling mode is studied.  相似文献   

3.
Based on the nonlinear large deflection theory of cylindrical shells, this paper deals with the nonlinear buckling problem of functionally graded cylindrical shells under torsion load by using the energy method and the nonlinear strain–displacement relations of large deformation. The material properties of the functionally graded shells vary smoothly through the shell thickness according to a power law distribution of the volume fraction of the constituent materials. Meanwhile, on the base of taking the temperature-dependent material properties into account, various effects of external thermal environment on the critical state of the shell are also investigated. Numerical results show various effects of the inhomogeneous parameter, the dimensional parameters and external thermal environment on nonlinear buckling of functionally graded cylindrical shells under torsion. The present theoretical results are verified by those in literature.  相似文献   

4.
Stability problems for cylindrical shells under various loading modes were considered in numerous papers. A detailed analysis of such problems can be found, e.g., in the monograph [1]. We refer to the solutions presented in this monograph as classical.For long cylindrical shells in axial compression, one of the buckling modes is the purely beam flexural mode similar to the classical buckling mode of a straight rod. It is well known that it can be studied by using the nonlinear or linearized equations of the membrane theory of shells. In [2], it was shown that, on the basis of such equations constructed starting from the noncontradictory version of geometrically nonlinear elasticity relations in the quadratic approximation [3], under the separate action of the axial compression, external pressure, and torsion, there are also previously unknown nonclassical buckling modes, most of which are shear ones.In the present paper, we show that the use of the above equations for cylindrical shells under compression and external pressure with simultaneous pure torsion or bending permits revealing the earlier unknown torsional, beam flexural, and beam torsional-flexural buckling modes, which are nonclassical, just as those found in [2]. The second of these buckling modes is realized when axially compressing forces are formed in the shell with simultaneous torsion, and the third of them is realized under compression combined with pure bending.It was found that, earlier than the classical buckling modes, the torsional buckling modes can be realized for relatively short shells with small shear rigidity in the tangent plane, while the second and third buckling modes can be realized for relatively long shells.  相似文献   

5.
薄壁加筋肋圆柱壳稳定性分析的参数化研究   总被引:1,自引:0,他引:1  
针对在轴向载荷作用下的正置、正交网格形式的薄壁加筋肋圆柱壳结构,利用有限元程序,对薄壁加筋肋圆柱壳稳定性分析进行了参数化研究,得到了进行结构优化设计的准则,对于给定的设计载荷,当结构参数位于某一个局部失稳与整体失稳的临界区域时,结构的重量最轻。提出了基于有限元分析进行结构优化设计的策略,利用优化策略,获得了一薄壁加筋肋圆柱壳结构的优化设计结果,同时给出了粘合刚度简化模型与有限元计算结果的比较。  相似文献   

6.
This paper presents an investigation on the buckling behaviour of single-walled carbon nanotubes under various loading conditions (compression, bending and torsion) and unveils several aspects concerning the dependence of critical measures (axial strain, bending curvature and twisting angle) on the nanotube length. The buckling results are obtained by means of an atomistic-scale generalized beam theory (GBT) that incorporates local deformation of the nanotube cross-section by means of independent and orthogonal deformation modes. Moreover, some estimates are also obtained by means of non-linear shell finite element analyses using Abaqus code. After classifying the buckling modes of thin-walled tubes (global, local and distortional), the paper addresses the importance of the two-wave distortional mode (flattening or ovalization mode) in their structural behaviour. Then, the well known expression to determine the critical strain of compressed nanotubes, which is based on Donnell theory for shallow shells, is shown to be inadequate for moderately long tubes due to warping displacements appearing in the distortional buckling modes. After that, an in-depth study on the buckling behaviour of nanotubes under compression, bending and torsion is presented. The variation of the critical kinematic measures (axial strain, bending curvature and twisting angle) with the tube length is thoroughly investigated. Concerning this dependence, some uncertainties that exist in the specific literature are meticulously explained, a few useful expressions to determine critical measures of nanotubes are proposed and the results are compared with available data collected from several published works (most of them, obtained from molecular dynamics simulations).  相似文献   

7.
The paper outlines the fundamentals of the method of solving static problems of geometrically nonlinear deformation, buckling, and postbuckling behavior of thin thermoelastic inhomogeneous shells with complex-shaped midsurface, geometrical features throughout the thickness, or multilayer structure under complex thermomechanical loading. The method is based on the geometrically nonlinear equations of three-dimensional thermoelasticity and the moment finite-element scheme. The method is justified numerically. Results of practical importance are obtained in analyzing poorely studied classes of inhomogeneous shells. These results provide an insight into the nonlinear deformation and buckling of shells under various combinations of thermomechanical loads  相似文献   

8.
A shell theory established from the interatomic potential for carbon nanotubes is compared with the atomistic simulations. This shell theory is implemented in the finite element program ABAQUS via its user-material subroutine UGENS for shells. The numerical results for the representative loadings of tension, torsion and bending agree well with the atomistic simulations, which provide direct validation of this atomistic-based shell theory for carbon nanotubes.  相似文献   

9.
为了研究碳纳米管在冲击扭矩作用下的动力屈曲,采用了连续模型将碳纳米管模拟成半无限长的弹性连续圆柱壳。将冲击扭矩作用下碳纳米管的动力屈曲问题归结为由于扭转应力波传播导致的分叉问题,此分叉问题被化为一个非线性方程组的求解。最后进行了数值分析,讨论了碳纳米管的不同参数对动力屈曲的影响,发现碳纳米管有极强的抗冲击性,临界屈曲剪应力可高达几百吉帕。  相似文献   

10.
薄壳失稳机理浅析   总被引:7,自引:0,他引:7  
对薄壳失稳问题研究的理论与实验成果进行了总结和讨论,对薄壳后屈曲理论研究结果提出了不同的看法,同时应用动力学原理对薄壳失稳问题进行了探讨,并建立了计算模型。文中应用动力学原理描述了从加载初期的一个呈现静力学特征的薄壳随荷载的增加而逐渐成为一个呈现动力学特征的薄壳的过程,从薄壳受扰振动乃至共振的角度解释了失稳临界荷载实验数据值及其离散并低于失稳临界荷载理论值的原因。  相似文献   

11.
An experimental study was carried out to clarify the effects of circular holes on the buckling of circular cylinders under axial compression. The effect of reinforcements was also examined by placing thin annular plates around the cutouts. Tests were performed on polyester shells with radius-to-thickness ratio of 400 and 100 and with two diametrically opposed circular holes. If a hole is small enough, there are no appreciable effects on the buckling strength of the cylinder. However larger cutouts result in a significant reduction of the buckling load. When doublers are placed around the holes, the buckling load approaches the value for the complete cylinder with no cutouts as the stiffening volume increases. Paper was presented at the 1982 SESA-JSME Joint Conference held in Oahu and Maui, HI on May 23–30, 1982.  相似文献   

12.
The nonlinear large deflection theory of cylindrical shells is extended to discuss nonlinear buckling and postbuckling behaviors of functionally graded (FG) cylindrical shells which are synchronously subjected to axial compression and lateral loads. In this analysis, the non-linear strain-displacement relations of large deformation and the Ritz energy method are used. The material properties of the shells vary smoothly through the shell thickness according to a power law distribution of the volume fraction of the constituent materials. Meanwhile, by taking the temperature-dependent material properties into account, various effects of external thermal environment are also investigated. The non-linear critical condition is found by defining the possible lowest point of external force. Numerical results show various effects of the inhomogeneous parameter, dimensional parameters and external thermal environments on non-linear buckling behaviors of combine-loaded FG cylindrical shells. In addition, the postbuckling equilibrium paths are also plotted for axially loaded pre-pressured FG cylindrical shells and there is an interesting mode jump exhibited.  相似文献   

13.
Experiments on the axial compression buckling of high-quality epoxy cylindrical shells with imposed dimpletype defects are described. Additionally, a technique for the manufacture of high-quality epoxy conical shells which buckle at loads approaching the classical critical load is presented. For both types of shells, prebuckling deformations have been monitored optically. The sizes of defects determined from the optical examination when applied in the space-frame approach to shell buckling have led to predicted knock-down factors which are remarkably consistent with measured knock-down factors (i.e., the ratio of actual collapse to classical critical load).  相似文献   

14.
利用随机场对圆柱薄壳结构的初始几何缺陷进行建模,并据此建立了一种用于含初始几何缺陷轴压圆柱薄壳屈曲分析的随机分析方法。首先,指出已有将圆柱薄壳初始几何缺陷表征为二维高斯随机场的方法会导致与实际不相符的初始几何缺陷,如圆柱周长显著增大或缩小的几何缺陷。其次,提出一种考虑周长不变约束的随机场建模方法,以剔除与实际不相符的随机几何缺陷。最后,基于所建立的初始几何缺陷随机场模型,利用非干涉多项式混沌展开法进行圆柱薄壳的随机屈曲分析,给出临界屈曲载荷的概率分布。数值试验结果表明,基于随机场理论的初始几何缺陷建模方法可有效刻画几何缺陷对结构承载能力的影响,而提出的约束随机场建模方法又能有效减小结果的分散性。  相似文献   

15.
Buckling behaviors of axially compressed functionally graded cylindrical shells with geometrical imperfections are investigated in this paper using Donnell shell theory and the nonlinear strain-displacement relations of large deformation. The analysis is based on the nonlinear prebuckling consistent theory. Both the prebuckling effects and the temperature-dependent material properties are taken into account. The buckling condition for imperfect functionally graded cylindrical shells is obtained by using the Galerkin method. Numerical results show various effects of imperfection, structural type, power law exponent, temperature and dimensional parameters on buckling. The present theoretical results are verified by those in literature.  相似文献   

16.
功能梯度碳纳米管增强复合材料是一种新一代的先进复合材料.在这种材料中,碳纳米管作为增强体在空间位置上梯度排布.功能梯度碳纳米管增强复合材料的力学行为已成为近年来材料科学与工程科学的研究热点.本文对功能梯度碳纳米管增强复合材料结构的建模与分析的研究进展进行评述,集中讨论功能梯度碳纳米管增强复合材料梁、板、壳在各种载荷条件下,边界条件下和环境条件下的线性和非线性弯曲、屈曲和后屈曲、振动和动力响应.文中所列成果可以看作是进一步研究的基石.最后,提出需要进一步研究的方向.  相似文献   

17.
本文由Sanders非线性平衡方程和Koiter小应变协调方程推导出细环壳的非线性微分方程和稳定方程。用伽辽金法求解了静水压或边界载荷作用下的半园环截面细环壳的稳定方程。对于不同的边界条件及一系列几何参数,计算得到了临界载荷及屈曲模态。  相似文献   

18.
An elastic double-shell model is presented for the buckling and postbuckling of a double-walled carbon nanotube subjected to axial compression. The analysis is based on a continuum mechanics model in which each tube of a double-walled carbon nanotube is described as an individual elastic shell and the interlayer friction is negligible between the inner and outer tubes. The governing equations are based on the Karman–Donnell-type nonlinear differential equations. The van der Waals interaction between the inner and outer nanotubes and the nonlinear prebuckling deformations of the shell are both taken into account. A boundary layer theory of shell buckling is extended to the case of double-walled carbon nanotubes under axial compression. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. Numerical results reveal that the single-walled carbon nanotube and the double-walled carbon nanotube both have an unstable postbuckling behavior.  相似文献   

19.
曹星  聂国隽 《力学季刊》2021,42(1):37-45
假设纤维方向角沿层合板的长度方向线性变化,研究含丝束重叠、间隙等制作缺陷的变角度纤维复合材料层合板的屈曲问题。采用ABAQUS有限元软件建立层合板的有限元模型,选用S4壳单元计算四边简支层合板在两端压缩荷载作用下的屈曲临界荷载及屈曲模态,并进行详细的参数分析。研究结果表明:当起始角相同时,含或不含制作缺陷的层合板的屈曲临界荷载均随着终止角的增大而逐渐提高,说明纤维的不同铺设方式对层合板的屈曲性能有很大影响。含重叠缺陷的层合板的屈曲临界荷载均大于不含缺陷层合板的值,而含间隙缺陷的层合板的屈曲临界荷载均小于不含缺陷层合板的值。当层合板的重叠、间隙缺陷共存且面积相等时,层合板的屈曲临界荷载与不含缺陷时层合板的值接近,制作缺陷对变角度纤维复合材料层合板屈曲模态的影响较小。本文研究结果可为含缺陷的变角度纤维复合材料层合板设计提供一定参考。  相似文献   

20.
本文提出了一种分析环加肋开孔柱壳屈曲问题的混合有限条──有限元法。环加肋柱壳作为一个构造上的正交各向异性壳处理,柱壳非开孔区采用有限条元离散,开孔区采用有限单元离散。在有限条元与有限单元交界面上,根据位移协调条件建立条元和单元的耦合关系,并据此构造一种特殊的过渡单元、联接条元和单元,进行整体分析。算例表明,这一方法对开孔柱壳屈曲问题的分折十分有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号