首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel sul-containing fluorinated polyimides have been synthesized by the reaction of 2,2′-bis-(trifluoromethyl)-4,4′-diaminodiphenyl sulfide (TFDAS) with 1,4-bis-(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA), 2,2′-bis-(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), 4,4′-oxydiphthalicanhydride (ODPA) or 3,4,3′,4′-biphenyl-tetracarboxylic acid dianhydride (s-BPDA). The fluorinated polyimides, prepared by a one-step polycondensation procedure, have good solubility in many solvents, such as N-methyl-2-pyrrolidinone (NMP), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), cyclohexanone, tetrahydrofuran (THF) and m-cresol. The molecular weights (Mn's) and polydispersities (Mn/Mw's) of polyimides were in the range of 1.24 × 105 to 3.21 × 105 and 1.59–2.20, respectively. The polymers exhibit excellent thermal stabilities, with glass-transition temperatures (Tg) at 221–275 °C and the 5% weight-loss temperature are above 531 °C. After crosslinking, these polymers show higher thermal stability. The films of polymers have high optical transparency. The novel sul-containing fluorinated polyimides also have low absorption at both 1310 and 1550 nm wavelength windows. Rib-type optical waveguide device was fabricated using the fluorinated polyimides and the near-field mode pattern of the waveguide was demonstrated.  相似文献   

2.
A novel dinuclear complex [Cu2(μ-L)4(HL)2] (1) was isolated from starting 2-pyridone (HL) via a resonance and a tautomeric transformation. Each copper centre is in a square-pyramidal coordination sphere, defined by two oxygen atoms (Cu–O4 1.978(5), Cu–O11 1.964(4) Å) and two nitrogen atoms (Cu–N2 2.003(5), Cu–N3 2.007(5) Å) of four bridging deprotonated pyridin-2-olates and an oxygen atom on the top from a neutral 2-pyridone (Cu–O2 2.227(5) Å), analogous to tetracarboxylate paddle-wheel complexes. Compound 1 was compared with mixed pyridin-2-olato/methanoato analogues [Cu2(μ-HCO2)2(μ-L)2(HL)2] · 2CH3CN (2) and [Cu2(μ-HCO2)2(μ-L)2(HL)2] (2a) (2a is an air stable form obtained from 2 outside mother-liquid). The EPR spectra of air stable 1 and 2a show three signals Hz1, H2 and Hz2, typical for the binuclear systems with spin S = 1, both revealing strong antiferromagnetism 2J = −334 (1) and −324 cm−1 (2a). Interestingly, only for 1 additional H1 signal at 100 mT is noticed (D(1) = 0.293 cm−1 <  = 0.320 cm−1 < D(2a) = 0.347 cm−1). On the other hand, several broad signals in the 100–450 mT region, only in the high temperature spectrum for 2a are observed. These results are in agreement with the magnetic susceptibility analysis.  相似文献   

3.
E. Clar 《Tetrahedron》1959,6(4):355-357
The comparison of the U.V. absorption spectra of acenes, 1:2–3:4-dibenzacenes and tetrabenzacenes shows a strong asymmetric annellation effect. This is explained on the basic assumption that an aromatic sextet or benzenoid ring can transfer only two electrons to another ring. Three benzenoid rings can thus produce an induced aromatic sextet in an included ring of the type of the central ring in triphenylene.

The synthesis of tetrabenzotetracene is described.  相似文献   


4.
The structure and texture characteristics of the hybrid organic–inorganic adsorbents, which were obtained by using of two-component systems of “structure-forming agent/trifunctional silane”, are compared as follows: the first component is Si(OC2H5)4 or (C2H5O)3Si–A–Si(OC2H5)3, where A = –(CH2)2– or –C6H4–; the second one is alkoxysilane with amine (–NH2, NH, –NH(CH2)2NH2) and thiol (–SH) groups. The adsorbents, derived from TEOS, have more accessible functional groups (2.6–4.2 mmol/g) than xerogels, which are based on bis(triethoxysilanes) (1.0–2.6 mmol/g). On another hand xerogels derived from bis(triethoxysilanes) have a more extended porous structure (Ssp =516–968 m2/g, Vs = 0.418–1.490 cm3/g, d = 2.5–15.0 nm) than those that are based on TEOS (Ssp = 4–631 m2/g, Vs = 0.005–1.382 cm3/g, d = 2.3–17.7 nm). The geometric dimensions of functional groups have a more essential effect on the parameters of porous structure in the case of TEOS-derived xerogels. Using solid-state NMR spectroscopy, it has been shown that in synthesis of xerogels with the use of TEOS, the molecular frame of globules is formed by structural units Qn (n = 2,3,4), and the functional groups exist as structural units of Tn (n = 2,3). The xerogels obtained with using bis(triethoxysilanes) consist only of structural units of Tn-type (n = 1,2,3).  相似文献   

5.
Upon UV irradiation in hexane at 243 K tricarbonyl-η5-cyclohexadienyl-manganese (1) and two equivalents of 2-butyne (2) or diphenylacetylene (4) yield in successive [5 + 2, 3 + 2] cycloadditions tricarbonyl-η2:2:1-1,2,3,10-tetramethyl-tricyclo[5.2.1.04,9]-deca-2,5-dien-10-yl-manganese (6), or tricarbonyl-η2:2:1-1,2,3,10-tetraphenyl-tricyclo[5.2.1.04,9]-deca-2,5-dien-10-yl-manganese (8), respectively. 3-Hexyne (3) reacts with 1 under the same conditions by successive [5 + 2, 3 + 2] cycloadditions and 1,4-H-shift to tricarbonyl-η2:2:1-1,2,3-triethyl-10-ethylidene-tricyclo[5.2.1.04,9]dec-2-en-5-yl-manganse (7). Identical products are also obtained when 1 is first irradiated in THF at 208 K and the thermolabile intermediate, dicarbonyl-η5-cyclohexadienyl-tetrahydrofurane-manganese (11), is treated with an excess of the alkynes 2–4. In contrast, bis(trimethylsily)acetylene (5) substitutes photochemically in 1 only a CO ligand to yield dicarbonyl-η5-cyclohexadienyl-η2-bis(trimethylsily)Acetylene-manganese (9). The crystal and molecular structure of 7 was determined by an X-ray diffraction analysis. Complex 7 crystallizes in the triclinic space group , a = 822.6(2) pm, B = 882.5(2) pm, C = 1344.6(2) pm, = 92.36(2)°, β = 107.13(2)°, γ = 99.71(2)°, V = 0.9152(3) nm3, Z = 2. The complexes 6–9 were studied in solution by IR and NMR spectroscopy. The structures of 6,8 and 9 were elucidated from the NMR spectra. A possible formation mechanism for the complexes 6–9 will be discussed.  相似文献   

6.
Characterization of six flavones, which were named substances G1, G2, G3, G4, G5 and G6 according to their RF values in normal-phase thin-layer chromatography, is reported. The pure flavones were purified after maceration with methanol by normal-phase solid-phase extraction, normal-phase medium-pressure liquid chromatography, normal-phase preparative thin-layer chromatography and preparative reversed-phase high-performance liquid chromatography (RP-HPLC). The collected fractions of several isolation steps were analyzed by normal-phase (NP) and RP-HPLC. Detection and identification of the substances G was accomplished by UV detection at 213–216 nm, diode array UV detection, or fluorescence detection (λex=330 nm; λem=440 nm). The molecular mass, the elementary composition, and the structure of the six components was determined by electron-impact high-resolution mass spectrometry (EI-HRMS). Substance G4 was identified as 3′,4′,5′-trimethoxyflavone. The substances G1–G6 were shown to be mono-, di- tri- and pentamethoxyflavones. HPLC–electrospray ionization tandem mass spectrometry (ESI-MS–MS) of the flavones was carried out employing a 150×2 mm I.D. column packed with a 3 μm/100 Å octadecylsilica stationary phase and a mobile phase comprising 1.0% acetic acid in water–acetonitrile (50:50). Comparative RP-HPLC–ESI-MS of the raw methanol extract and the isolated substances G1–G6 proved that the isolated compounds were pure and were not artifacts. Finally, RP-HPLC–ESI-MS–MS was used to identify substances G1–G6 in phytopharmaceutical drugs.  相似文献   

7.
This work presents novel colorless polyimides (PIs) derived from 1R,2S,4S,5R‐cyclohexanetetracarboxylic dianhydride (H″‐PMDA). Isomer effects were also discussed by comparing with PI systems derived from conventional hydrogenated pyromellitic dianhydride, that is, 1S,2R,4S,5R‐cyclohexanetetracarboxylic dianhydride (H‐PMDA). H″‐PMDA was much more reactive with various diamines than H‐PMDA, and the former led to PI precursors with much higher molecular weights. The results can be explained from the quite different steric structures of these isomers. The thermally imidized H″‐PMDA‐based films were colorless regardless of diamines because of inhibited charge‐transfer interaction. In particular, the H″‐PMDA/4,4′‐oxydianiline system simultaneously achieved a very high Tg exceeding 300 °C, high toughness (elongation at break > 70%), and good solution processability. In contrast, the H‐PMDA‐based counterparts were essentially insoluble. The outstanding solubility of the former probably results from disturbed chain stacking by its nonplanar steric structure. An advantage of chemical imidization process is also proposed. In some cases, a copolymerization approach with an aromatic tetracarboxylic dianhydride was effective to improve the thermal expansion property. The results suggest that the H″‐PMDA‐based PI systems can be promising candidates for novel high‐temperature plastic substrate materials in electronic paper displays. A potential application as optical compensation film materials in liquid crystal displays (LCD) is also proposed in this work. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
Novel isonitrile derivatives of a diruthenium carbonyl complex, (μ235-guaiazulene)Ru2(CO)5 (2), were synthesized by substitution of a CO ligand by an isonitrile, and were subjected to studies on thermal and photochemical haptotropic interconversion. Treatment of 2 (a 45:55 mixture of two haptotropic isomers, 2-A and 2-B) with RNC at room temperature resulted in coordination of RNC and alternation of the coordination mode of the guaiazulene ligand to form (μ215-guaiazulene)Ru2(CO)5(CNR), 5d–5f, [5d; R=tBu, 5e; 2,4,6-Me3C6H2, or 5f; 2,6-iPr2C6H3] in moderate to good yields. Thermal dissociation of a CO ligand from 5 at 60 °C resulted in quantitative formation of a desirable isonitrile analogue of 2, (μ235-guaiazulene)Ru2(CO)4(CNR), 4d–4f, [4d; R=tBu, 4e; 2,4,6-Me3C6H2, or 4f; 2,6-iPr2C6H3], as a 1:1 mixture of the two haptotropic isomers. A direct synthetic route from 2 to 4d–4f was alternatively discovered; treatment of 2 with one equivalent of RNC at 60 °C gave 4d–4f in moderate yields. All of the new compounds were characterized by spectroscopy, and structures of 5d (R=tBu) and 4d-A (R=tBu) were determined by crystallography. Thermal and photochemical interconversion between the two haptotropic isomers of 4d–4f revealed that the isomer ratios in the thermal equilibrium and in the photostatic state were in the range of 48:52–54:46.  相似文献   

9.
Propynyl isocyanide, CH3C2NC, has been prepared by vacuum pyrolysis of pentacarbonyl-(1,2-dichloropropenyl isocyanide) chromium, (CO)5Cr–CN–C(Cl)=C(Cl)CH3, and its ground state millimeter and microwave spectrum has been observed for the first time. rs structural parameters of this molecule with a C3v symmetry could be obtained from the rotational constants of several isotopomers: r(C1–C2)=1.456(2) Å, r(C2–C3)=1.206(2) Å, r(C3–N)= 1.316(2) Å, r(N–C4)= 1.175(2) Å, r(H–C1)= 1.090(1) Å, >HCC=110.7(4)°. The nitrogen quadrupole coupling constant has been determined to be 878(2) kHz and measurements of the Stark effect allowed to obtain an electric dipole moment of 4.19(3) Debye. The results fit well into a series of related compounds and are in good agreement with data from ab initio calculations.  相似文献   

10.
A new chiral stationary phase (CSP) was prepared by reacting MDL 63,246 (Hepta-Tyr), a glycopeptide antibiotic belonging to the teicoplanin family, with 5-μm diol-silica particles. The CSP mixed with 5-μm amino silica particles (3:1) was packed into 75-μm fused-silica capillaries for only 6.6 cm and used for electrochromatographic experiments analyzing several hydroxy acid enantiomers. A reversed electroosmotic flow carried both analytes and mobile phase towards the anode in a short time (1–3 min), being baseline resolved all the studied analytes. In order to achieve the fastest enantiomeric resolution of the studied hydroxy acids, the effect of several experimental parameters such as mobile phase composition (organic modifier type and concentration, pH of the buffer and ionic strength), capillary temperature and applied voltage on enantioresolution factor, retention time, enantioselectivity were evaluated. The packed capillary column allowed the separation of mandelic acid enantiomers in less than 72 s with resolution factor Rs=2.18 applying a voltage of 30 kV and eluting with a mobile phase composed by 50 mM ammonium acetate (pH 6)–water–acetonitrile (1:4:5, v/v). The CSP was also tested in the capillary liquid chromatography mode resolving all the studied enantiomers applying 12 bar pressure to the mobile phase [50 mM ammonium acetate (pH 6)–water–methanol–acetonitrile, 1:4:2:3, v/v)], however, relatively long analysis times were observed (12–20 min).  相似文献   

11.
Azaspiracid poisoning (AZP) is a new human toxic syndrome that is caused by the consumption of shellfish that have been feeding on harmful marine microalgae. A liquid chromatography–mass spectrometry (LC–MS) method has been developed for the determination of the three most prevalent toxins, azaspiracid (AZA1), 8-methylazaspiracid (AZA2) and 22-demethylazaspiracid (AZA3) as well as the isomeric hydroxylated analogues, AZA4 and AZA5. Separation of five azaspiracids was achieved on a C18 column (Luna-2, 150×2 mm, 5 μm) with isocratic elution using acetonitrile–water containing trifluoroacetic acid and ammonium acetate as eluent modifiers. Using an electrospray ionisation (ESI) source with an ion-trap mass spectrometer, the spectra showed the protonated molecules, [M+H]+, with most major product ions due to the sequential loss of two water molecules. A characteristic fragmentation pathway that was observed in each azaspiracid was due to the cleavage of the A-ring at C9–C10 for each toxin. It was possible to select unique ion combinations to distinguish between the isomeric azaspiracids, AZA4 and AZA5. Highly sensitive LC–MS3 analytical methods were compared and the detection limits were 5–40 pg on-column. Linear calibrations were obtained for AZA1 in shellfish in the range 0.05–1.00 μg/ml (r2=0.9974) and good reproducibility was observed with a relative standard deviation (%RSD) of 1.8 for 0.9 μg AZA1/ml (n=5). The %RSD values for the minor toxins, AZA4 and AZA5, using LC–MS3 (A-ring fragmentation) were 12.3 and 8.1 (0.02 μg/ml; n=7), respectively. The selectivity of toxin determination was enhanced using LC–MS–MS with high energy WideBand activation.  相似文献   

12.
The photolysis of 2,2′-dinitrodiphenylmethylbenzoates (1a–1d) in 2-propanol gives dibenzo-[c, f]-[1,2]diazepin-11-one-oxides (5a–5d) as the major product. Dibenzo[c, f]-[1,2]diazepin-11-ones (2a–2d), 2,2′-dinitrobenzophenones (3a–3d), 2-amino-2′-nitrobenzophenones (4a–4d) and N-hydroxyacridones (6a–6d) are also formed in the reaction. When the irradiation is carried out in benzene, 3-(2′-nitrophenyl)-2,1-benzisoxazoles (7a–7d) are also obtained together with the above products.  相似文献   

13.
The electronic and geometrical structures of the low-energy states of 1,4,5,8-naphthalenetetracarboxylic dianhydride parent diimide (1) are studied in terms of the complete active space self-consistent field (CASSCF) method employed at different level with respect to the size and the quality of the active space. In the framework of the vibronic model based on the Franck–Condon (FC) effect the absorption and magnetic circular dichroism (MCD) spectra are studied in the excitation region corresponding to two low-energy 11Ag → 11B2u and 11Ag → 11B3u electronic transitions in diimides. In that (visible) excitation region the CASSCF computations with the 5π[4n]5π active space (i.e., the naphthalene-like π orbitals enriched by the four lone pair orbitals of the oxygen atoms) were found to reproduce very well the empirical absorption and the MCD spectra measured for the dicyclohexyl-N,N-substituted diimide (2). At the same CASSCF/5π[4n]5π level, the electronic absorption of diimides in the near UV excitation region were attributed to the 11Ag → 21B1u, 11Ag → 21B3u and 11Ag → 21B2u electronic transitions; the latter two are mostly localized on the “diimide chromophore”. For these transitions the calculated magneto-optical characteristics, such as sign pattern and intensity distribution in the MCD spectrum, were found to be consistent with that experimentally observed for the diimide 2 compound.  相似文献   

14.
Novel Oligodeoxynucleotide analogues containing 3′-C-threo-methylene phosphodiester internucleoside linkages were synthesized on automated DNA-synthesizers using the phosphoramidite approach. The sugar modified phosphoramidite building block 5 was obtained by phosphitylation of 1-(2,3-dideoxy-5-O-(4,4′-dimethoxytrityl)-3-C-hydroxymethyl-β-D-threo-pentofuranosyl)thymine (4) which was synthesized in only three steps from 5′-O-(4,4′-dimethoxytrityl)thymidine (1). The hybridization properties and enzymatic stability of the oligonucleotide analogues were studied by UV experiments. 17-Mers having one or three modifications in the middle or two modifications in each end hybridized to DNA with moderate lowered affinity compared to unmodified 17-mers (ΔTm 1–3°C per modification). Furthermore, the end-modified and all-modified oligonucleotides were stable towards snake venom phosphodiesterase.  相似文献   

15.
Gas-phase reaction of C(1)F3S(2)O2O(3)C(4)H2C(5)F3 and F(16) is investigated using DFT method. The geometries of various stationary points and their relative energies are obtained from 6-31+G*, 6-311G**, and 6-311++G** levels. In the SN2(C) reaction leading to the cleavage of the C(4)–O(3) bond, the reaction complex results from attacking of F at a hydrogen atom H11 attached to carbon atom C(4). Afterward, F is attacking the atom C(4) from the backside of the atom O(3) with the help of the neighboring effect, and meanwhile a multi-membered ring, F(16)–H(11)–C(4)–C(5)–F(16), is being formed. The SN2(C) reaction is irreversible. On the contrary, the SN2(S) reaction leading to the cleavage of the S(2)–O(3) bond is reversible, and it is initiated by attacking of F at the atom S(2) from the backside of the atom O(3). The products of the reaction CF3SO3CH2CF3 +F should be, thermodynamically, controlled due to the reversibility of the SN2(S) reaction, and those result, chemospecifically, from the cleavage of the C–O bond. At last, the SCRF calculations confirm that the solvent effect is preferable to the SN2(C) reaction.  相似文献   

16.
Ahmed MJ  Banoo S 《Talanta》1999,48(5):711-1094
The very sensitive, fairly selective direct spectrophotometric method for the determination of trace amount of vanadium (V) with 1,5-diphenylcarbohydrazide (1,5-diphenylcarbazide) has been developed. 1,5-diphenylcarbohydrazide (DPCH) reacts in slightly acidic (0.0001–0.001 M H2SO4 or pH 4.0–5.5) 50% acetonic media with vanadium (V) to give a red–violet chelate which has an absorption maximum at 531 nm. The average molar absorption coefficient and Sandell’s sensitivity were found to be 4.23×104 l mol−1 cm−1 and 10 ng cm−2 of Vv, respectively. Linear calibration graph were obtained for 0.1–30 μg ml−1 of Vv: the stoichiometric composition of the chelate is 1:3 (V: DPCH). The reaction is instantaneous and absorbance remain stable for 48 h. The interference from over 50 cations, anions and complexing agents has been studied at 1 μg ml−1 of Vv. The method was successfully used in the determination of vanadium in several standard reference materials (alloys and steels), environmental waters (potable and polluted), biological samples (human blood and urine), soil samples, solution containing both vanadium (V) and vanadium (IV) and complex synthetic mixtures. The method has high precision and accuracy (s=±0.01 for 0.5 μg ml−1).  相似文献   

17.
L 《Polyhedron》2006,25(18):3481-3487
Lithium 2-thienyltellurolate, generated from 2-thienyl lithium, reacts at −78 °C in THF with chloroethyl ethyl sulfide to give a (Te, S) ligand 1-ethylthio-2-[2-thienyltelluro]ethane (L) as a red oil. The complexes [PdCl2(L)] (1), [PtCl2(L)] (2), [Ag(L)2][ClO4] (3) and [CuBr(L)]2 (4) were synthesized. The complex [HgCl2(L)] on crystallization decomposed giving Th2TeCl2 (5) [where Th = 2-thienyl], which was characterized by X-ray diffraction on its single crystals. The ligand L and complexes 1–4 exhibit proton and carbon-13 NMR spectra, which are characteristic. The coordination through Te in 1–4 is indicated by downfield coordination shifts in the position of the TeCH2 signal of L. Complex 1 was characterized by X-ray diffraction on its single crystals. The geometry around Pd is square planar. The Pd–Te, Pd–S and Pd–Cl bond lengths are 2.5040(4), 2.273(1) and 2.322(1)/2.380(1) Å, respectively. There are intermolecular interactions between Te (coordinated to Pd) and Cl, and sulfur and Cl. The Te–Cl and S–Cl distances, 3.401 and 3.488 Å, respectively, are shorter than the sum of the van der Waal’s radii (3.81 and 3.55 Å, respectively). The Pd–Pd distance between the two molecules is 3.4156(6) Å, greater than the sum of van der Waal’s radii (3.26 Å). The structure of 5 is typical of that of a tellurium(IV) compound (saw-horse type). The two Te–Cl bond lengths are identical, 2.480(1) Å. The geometry around Te in 5 can be best described as pseudo tetrahedral (trigonal bipyramidal with a lone pair on one corner of the triangle).  相似文献   

18.
The new chloro(cyclopentadienyl)silanes Cp′SiHyCl3−y (Cp′=Me4EtC5, y=1: 1; Cp′=Me4C5H, y=1: 2; y=0: 3; Cp′=Me3C5H2, y=1: 4 and pentachloro(cyclopentadienyl)disilanes Cp′Si2Cl5 (Cp′=Me5C5 5, Me4EtC5 6, Me4C5H 7, Me3C5H2 8, Me3SiC5H4 9) are synthesized in good yields via metathesis reactions. Treatment of 1–9 with LiAlH4 leads under Cl–H exchange to the hydridosilyl compounds Cp′SiH3 (Cp′=Me4EtC5 10, Me4C5H 11, Me3C5H2 12) and to the hydridodisilanyl compounds Cp′Si2H5 (Cp′=Me5C5 13, Me4EtC5 14, Me4C5H 15, Me3C5H2 16, Me3SiC5H4 17). Complexes 1–17 are characterized by 1H, 13C, and 29Si-NMR spectroscopy, IR spectroscopy, mass spectrometry and CH-analysis. The structures of 6, 7 and 9 are determined by single-crystal X-ray diffraction analysis. Pyrolysis studies of the cyclopentadienylsilanes 10–12 and disilanes 13–17 show their suitability as precursors in the MOCVD process.  相似文献   

19.
Cadmium concentration in lake sediments is determined by suspending the solid samples in a solution containing 5% (v/v) concentrated nitric acid and 0.1% (v/v) Triton X-100. Three modifiers were tested for the direct determination. The furnace temperature programmes and appropriate amount for each modifier were optimised to get the highest signal and the best separation between the atomic and background signals. The drying stage is performed by programming a 400 °C temperature, a ramp time of 25 s and hold time of 10 s on the power supply of the atomiser. No ashing step is used and platform atomisation is carried out at 2200 °C. W–Rh permanent modifier combined with conventional modifier by delivering 10 μl of 0.50% (w/v) NH4H2PO4 solution was the best chemical modifier for cadmium determination. This modifier also acts as a liquid medium for the slurry, thus simplifying the procedure. Calibration is performed using aqueous standards in the 1–5 μg l−1 range. The optimised method gave a limit of detection of 0.56 ng ml−1, characteristic mass of 10.1±0.8 pg for aqueous standard, 9.6±0.7 pg for slurry samples containing different Cd concentrations and good precision (7.6–5.2%). The method was validated by analysing four certified reference lake sediment materials: LKSD-1, LKSD-2, LKSD-3 and LKSD-4; satisfactory recoveries were obtained (90.0–96.3%) and no statistical differences were observed between the experimental and the certified cadmium concentration. The developed methodology was used to determine cadmium in three ‘real’ sediment samples from lakes in the area of Wielkopolski National Park, Poland.  相似文献   

20.
DFT (B3LYP/6-311++G**, B3PW91/6-311++G**) Gibbs free energy and single point CCSD(T)/6-311++G**//DFT total energy calculations were performed to investigate stability and tautomerism of C5-substituted 1,2,4-triazoles. Three different tautomers are possible for the substituted 1,2,4-triazoles: N1–H, N2–H, and N4–H. Unlike for the 1,2,3-triazoles, where the most stable is the N2–H tautomer regardless of substituent applied, for the 1,2,4-triazoles, the electron donating substituents (–OH, –F, –CN, –NH2, and –Cl) and the C5-cation stablize the N2–H tautomer, whereas the electron withdrawing substituents (–CONH2, –COOH, –CHO, –BH2, and –CFO) and the C5-anion stablize the N1–H tautomer. Except for the C5-anion and C5-cation, the N4–H form is the least stable tautomer. The relative stability of the C5-substituted 1,2,4-triazole tautomers is strongly influenced by attractive and/or repulsive intramolecular interactions between substituent and electron donor or electron acceptor centres of the triazole ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号