首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We show that every bridgeless graph of maximum degree has a spanning -walk. The bound is optimal. Supported by project 1M0545 and Research Plan MSM 4977751301 of the Czech Ministry of Education. Supported by the NSFC (60673047 and 10471078), SRSDP (20040422004) and PDSF (2004036402) of China.  相似文献   

2.
The following results are proved. In Theorem 1, it is stated that there exist both finitely presented and not finitely presented 2-generated nonfree groups which are k-free-like for any k ⩾ 2. In Theorem 2, it is claimed that every nonvirtually cyclic (resp., noncyclic and torsion-free) hyperbolic m-generated group is k-free-like for every k ⩾ m + 1 (resp., k ⩾ m). Finally, Theorem 3 asserts that there exists a 2-generated periodic group G which is k-free-like for every k ⩾ 3. Supported by NSF (grant Nos. DMS 0455881 and DMS-0700811). (A. Yu. Olshanskii, M. V. Sapir) Supported by RFBR project No. 08-01-00573. (A. Yu. Olshanskii) Supported by BSF grant (USA–Israel). (M. V. Sapir) Translated from Algebra i Logika, Vol. 48, No. 2, pp. 245–257, March–April, 2009.  相似文献   

3.
Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-dominating set of the graph G is a subset D of V (G) such that every vertex of V (G)-D is adjacent to at least k vertices in D. A k-domatic partition of G is a partition of V (G) into k-dominating sets. The maximum number of dominating sets in a k-domatic partition of G is called the k-domatic number d k (G). In this paper, we present upper and lower bounds for the k-domatic number, and we establish Nordhaus-Gaddum-type results. Some of our results extend those for the classical domatic number d(G) = d 1(G).   相似文献   

4.
The double loop network (DLN) is a circulant digraph with n nodes and outdegree 2. It is an important topological structure of computer interconnection networks and has been widely used in the designing of local area networks and distributed systems. Given the number n of nodes, how to construct a DLN which has minimum diameter? This problem has attracted great attention. A related and longtime unsolved problem is for any given non-negative integer k, is there an infinite family of k-tight optimal DLN? In this paper, two main results are obtained (1) for any k ≥ 0, the infinite families of k-tight optimal DLN can be constructed, where the number n(k,e,c) of their nodes is a polynomial of degree 2 in e with integral coefficients containing a parameter c. (2) for any k ≥ 0,an infinite family of singular k-tight optimal DLN can be constructed.  相似文献   

5.
Abstract. For k ≥ 2, we exhibit complete k-curvature homogeneous neutral signature pseudo-Riemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalarWeyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov-Petrova. Mathematics Subject Classification (2000): 53B20  相似文献   

6.
Recently the first author presented exact formulas for the number of 2 n -periodic binary sequences with given 1-error linear complexity, and an exact formula for the expected 1-error linear complexity and upper and lower bounds for the expected k-error linear complexity, k ≥ 2, of a random 2 n -periodic binary sequence. A crucial role for the analysis played the Chan–Games algorithm. We use a more sophisticated generalization of the Chan–Games algorithm by Ding et al. to obtain exact formulas for the counting function and the expected value for the 1-error linear complexity for p n -periodic sequences over prime. Additionally we discuss the calculation of lower and upper bounds on the k-error linear complexity of p n -periodic sequences over .   相似文献   

7.
Abstract The main purpose of this paper is to use the estimate for character sums and the method of trigonometric sums to study the 2k-th power mean of the inversion of Dirichlet L-functions with the weight of the Gauss sums, and give a sharper asymptotic formula. This work is supported by the Doctorate Foundation of Xi’an Jiaotong University  相似文献   

8.
We prove that if k is a positive integer and d is a positive integer such that the product of any two distinct elements of the set {k + 1, 4k, 9k + 3, d} increased by 1 is a perfect square, then d = 144k 3 + 192k 2 + 76k + 8.   相似文献   

9.
An approximate algorithm to efficiently solve the k-Closest-Pairs problem on large high-dimensional data sets is presented. The algorithm runs, for a suitable choice of the input parameters, in time, where d is the dimensionality and n is the number of points of the input data set, and requires linear space in the input size. It performs at most d+1 iterations. At each iteration a shifted version of the data set is sequentially scanned according to the order induced on it by the Hilbert space filling curve and points whose contribution to the solution has already been analyzed are detected and eliminated. The pruning is lossless, in fact the remaining points along with the approximate solution found can be used for the computation of the exact solution. If the data set is entirely pruned, then the algorithm returns the exact solution. We prove that the pruning ability of the algorithm is related to the nearest neighbor distance distribution of the data set and show that there exists a class of data sets for which the method, augmented with a final step that applies an exact method to the reduced data set, calculates the exact solution with the same time requirements.Although we are able to guarantee a approximation to the solution, where t{1,2,...,} identifies the Minkowski (Lt) metric of interest, experimental results give the exact k closest pairs for all the large high-dimensional synthetic and real data sets considered and show that the pruning of the search space is effective. We present a thorough scaling analysis of the algorithm for in-memory and disk-resident data sets showing that the algorithm scales well in both cases.Mathematics Subject Classification (2000) 68W25.  相似文献   

10.
In this note we study the relation between k R -spaces and k-spaces and prove that a k R -space with a σ-hereditarily closure-preserving k-network consisting of compact subsets is a k-space, and that a k R -space with a point-countable k-network consisting of compact subsets need not be a k-space. This work was supported by the NSF of China (10271056).  相似文献   

11.
Bound on <Emphasis Type="Italic">m</Emphasis>-restricted Edge Connectivity   总被引:3,自引:0,他引:3  
An m-restricted edge cut is an edge cut that separates a connected graph into a disconnected one with no components having order less than m. m-restrict edge connectivity λm is the cardinality of a minimum m-restricted edge cut. Let G be a connected k-regular graph of order at least 2m that contains m-restricted edge cuts and X be a subgraph of G. Let θ(X) denote the number of edges with one end in X and the other not in X and ξm=min{θ(X) ;X is a connected vertex-induced subgraph of order m}.It is proved in this paper that if G has girth at least m/2 2,then λm≤ξm.The upper bound of λm is sharp.  相似文献   

12.
Plesnik in 1972 proved that an (m - 1)-edge connected m-regular graph of even order has a 1-factor containing any given edge and has another 1-factor excluding any given m - 1 edges. Alder et al. in 1999 showed that if G is a regular (2n + 1)-edge-connected bipartite graph, then G has a 1-factor containing any given edge and excluding any given matching of size n. In this paper we obtain some sufficient conditions related to the edge-connectivity for an n-regular graph to have a k-factor containing a set of edges and (or) excluding a set of edges, where 1 ≤ k ≤n/2. In particular, we generalize Plesnik's result and the results obtained by Liu et al. in 1998, and improve Katerinis' result obtained 1993. Furthermore, we show that the results in this paper are the best possible.  相似文献   

13.
A new analytical tool is presented to provide a better understanding of the search space of k-sat. This tool, termed the local value distribution , describes the probability of finding assignments of any value q′ in the neighbourhood of assignments of value q. The local value distribution is then used to define a Markov model to model the dynamics of a corresponding stochastic local search algorithm for k-sat. The model is evaluated by comparing the predicted algorithm dynamics to experimental results. In most cases the fit of the model to the experimental results is very good, but limitations are also recognised.  相似文献   

14.
We explicitly solve the existence problem for 1-rotational k-cycle systems of the complete graph Kv with v1 or k (mod 2k). For v1 (mod 2k) we have existence if and only if k is an odd composite number. For any odd k and vk (mod 2k), (except k3 and v15, 21 (mod 24)) a 1-rotational k-cycle system of Kv exists.Final version received: June 18, 2003  相似文献   

15.
A necessary and sufficient condition for the existence of a km–factorization of the complete symmetric k–partite multi-digraph K*(n1,n2,...,nk) is obtained for odd k. As a consequence, a resolvable (k,n,km,) multipartite km–design exists for odd k if and only if m|n. This deduces a result of Ushio when m=1 and k=3. Further, a necessary and sufficient condition for the existence of a km–factorization of is established for even k, where denotes the wreath product of graphs. Finally, a simple and short proof for the non-existence of a k–factorization of is obtained for odd k.Acknowledgments.The author thanks Dr. P. Paulraja for his useful ideas in writing this paper and the Department of Science and Technology, New Delhi, for its support (Project Grant No. DST/MS/103/99).Final version received: November 17, 2003  相似文献   

16.
The concept of the k-pairable graphs was introduced by Zhibo Chen (On k-pairable graphs, Discrete Mathematics 287 (2004), 11–15) as an extension of hypercubes and graphs with an antipodal isomorphism. In the same paper, Chen also introduced a new graph parameter p(G), called the pair length of a graph G, as the maximum k such that G is k-pairable and p(G) = 0 if G is not k-pairable for any positive integer k. In this paper, we answer the two open questions raised by Chen in the case that the graphs involved are restricted to be trees. That is, we characterize the trees G with p(G) = 1 and prove that p(GH) = p(G) + p(H) when both G and H are trees.  相似文献   

17.
Let A be a compact set in of Hausdorff dimension d. For s ∈ (0,d) the Riesz s-equilibrium measure μ s is the unique Borel probability measure with support in A that minimizes
over all such probability measures. If A is strongly -rectifiable, then μ s converges in the weak-star topology to normalized d-dimensional Hausdorff measure restricted to A as s approaches d from below. This research was supported, in part, by the U. S. National Science Foundation under grants DMS-0505756 and DMS-0808093.  相似文献   

18.
In this paper, we get W 1,p (R n )-boundedness for tangential maximal function and nontangential maximal function, which improves J.Kinnunen, P.Lindqvist and Tananka’s results. Supported by the key Academic Discipline of Zhejiang Province of China under Grant No.2005 and the Zhejiang Provincial Natural Science Foundation of China.  相似文献   

19.
We introduce a new class of graphs which we call P 3-dominated graphs. This class properly contains all quasi-claw-free graphs, and hence all claw-free graphs. Let G be a 2-connected P 3-dominated graph. We prove that G is hamiltonian if α(G 2) ≤ κ(G), with two exceptions: K 2,3 and K 1,1,3. We also prove that G is hamiltonian, if G is 3-connected and |V(G)| ≤ 5δ(G) − 5. These results extend known results on (quasi-)claw-free graphs. This paper was completed when both authors visited the Center for Combinatorics, Nankai University, Tianjin. They gratefully acknowledge the hospitality and support of the Center for Combinatorics and Nankai University. The work of E.Vumar is sponsored by SRF for ROCS, REM.  相似文献   

20.
For any nontrivial connected graph F and any graph G, the F-degree of a vertex v in G is the number of copies of F in G containing v. G is called F-continuous if and only if the F-degrees of any two adjacent vertices in G differ by at most 1; G is F-regular if the F-degrees of all vertices in G are the same. This paper classifies all P 4-continuous graphs with girth greater than 3. We show that for any nontrivial connected graph F other than the star K 1,k , k ⩾ 1, there exists a regular graph that is not F-continuous. If F is 2-connected, then there exists a regular F-continuous graph that is not F-regular.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号