首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to create a simple, solventless technique without derivatisation in order to analyze a broad range of volatiles in beer wort. A method was developed using headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry. The procedure was optimised by selection of the appropriate fibre and optimisation of extraction temperature, extraction time, and salting-out. The detection limits were well below the actual wort concentrations of the selected volatiles, ranging from 12 ng/l for linalool to 0.53 microg/l for furfural. Moreover, the procedure showed a good linearity and was applied to the analysis of wort samples taken from a wort boiling process in an industrial brewery.  相似文献   

2.
Headspace solid-phase microextraction (SPME) followed by gas chromatography and mass spectrometry was applied for quantification of 41 chemically diverse carbonyl compounds in beer. Therefore, in-solution derivatisation with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) combined with SPME was optimised for fibre selection, PFBHA concentration, extraction temperature and time and ionic strength. Afterwards, the method was calibrated and validated successfully and extraction efficiency was compared to sampling with on-fibre derivatisation. In-solution derivatisation enabled the detection of several compounds that were poorly extracted with on-fibre derivatisation such as 5-hydroxymethylfurfural, acrolein, hydroxyacetone, acetoin, glyoxal and methylglyoxal. Others, especially (E)-2-nonenal, were extracted better with on-fibre derivatisation.  相似文献   

3.
Headspace solid-phase microextraction combined with gas chromatography and mass spectrometry was used for the quantification of 32 volatiles which represent the typical chemical reactions that can occur during beer ageing. Detection was accomplished by employing on-fibre derivatisation using o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and normal HS-SPME extraction. The procedures were optimised for SPME fibre selection, PFBHA loading temperature and time, extraction temperature and time, and effect of salt addition. Interference of matrix effects was overcome by calibrating according to the standard addition method and by using internal standards. Afterwards, the method was validated successfully and was applied to study the flavour stability of different beer types.  相似文献   

4.
Fossa cheese is an Italian hard cheese, ripened for up to 3 months in underground pits dug into tuffaceous rock. During this period, the cheese develops a unique flavour and intense and somewhat piquant aroma. Solid-phase microextraction gas chromatography/mass spectrometry (SPME-GC/MS) was utilized to characterize the volatile organic compounds (VOCs) of Fossa cheese. A total of 75 VOCs were separated and identified; in particular, the major class of compounds found in the cheeses ripened in the pits were the esters of fatty acids. Discriminant analysis of volatile profiles allowed us to distinguish between cheeses in different stages of seasoning (60-day-old cheese and cheese ripened an additional 90 days in and out of the pits).  相似文献   

5.
Solid-phase microextraction (SPME) followed by gas chromatography/mass spectrometry (GC/MS) was used for the detection of liver cancer volatile biomarkers. Headspace SPME conditions (fiber coating, extraction temperature and extraction time) and desorption conditions were optimized and applied to the determination of volatiles in human blood. Between the liver cancer group (n = 19) and the normal group (n = 18), positive rates of 19 volatile compounds among the total of 47 detected were found to be different with statistical significance (p < 0.05, chi-squared test). We suggested hexanal, 1-octen-3-ol and octane, of the 19 compounds, as biomarkers of liver cancer with clinical diagnostic value. The sensitivity and specificity of 94.7% and 100% for hexanal, 84.2% and 100% for 1-octen-3-ol, and 89.5% and 100% for octane were obtained, respectively, after the cutoff values had been properly established. These results show that SPME-GC/MS is a simple, rapid and sensitive method for the investigation of volatile disease markers in human blood.  相似文献   

6.
The frying of foods in the home can be a cause of indoor pollution due to the formation of acrolein. The emission of acrolein formed during frying in soybean, corn, canola, sunflower and palm oils was studied. A GC/MS method has been developed to determine acrolein in French fries using SPME as the sampling technique after derivatization with 2,4-dinitrophenylhydrazine (DNPH). Optimum SPME conditions included desorption at 250°C for 2min after an adsorption time of 10min at room temperature. The method presented good resolution, repeatability, detection and quantification limits, and linearity of response. French fries were prepared in five different oils with four frying steps. The results showed that changes in acrolein concentration occurred after frying potatoes in different types of oil and at different frying cycles. Potatoes fried in soybean oil contained the lowest concentration of acrolein. Shoestring potatoes contained a lower concentration of acrolein than potato chips and French fries, respectively, because of the higher surface/volume ratio.  相似文献   

7.
In this work, solid-phase microextraction (SPME) has been applied as an alternative for the selective extraction of 3 polybrominated diphenyl ethers (PBDEs), 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47); 2,2',4,4',5-pentabromodiphenyl ether (PBDE-99); and 2,2',4,4',6-pentabromodiphenyl ether (PBDE-100), and 2 alkylphenols, 4-tert-OP and 4-NP, prior to their analysis by gas chromatography/mass spectrometry (GC/MS). The advantages of this technique are mainly its simplicity, cost-effectiveness, and time-saving sample preparation, as well as being a solvent-free technique. With the aim of optimizing the conditions for an efficient extraction of the studied compounds, different fiber coatings and the main parameters affecting the extraction procedure have been evaluated. The results obtained showed a good linearity in the range of concentrations investigated, and adequate relative standard deviation values were found according to the range accepted for SPME. Recovery values were in the range of 78-108%, and good detection and quantitation limits at ppt levels were obtained for both methods, allowing the determination of the selected compounds in samples at trace levels. The results obtained clearly show the potential of SPME for efficient concentration of the target compounds and also demonstrate the reliability of this extraction technique for their GC/MS analysis.  相似文献   

8.
Liseth Ferreira 《Talanta》2009,77(3):1087-1096
The analysis of volatile compounds in Funchal, Madeira, Mateus and Perry Vidal cultivars of Annona cherimola Mill. (cherimoya) was carried out by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry detection (GC-qMSD). HS-SPME technique was optimized in terms of fibre selection, extraction time, extraction temperature and sample amount to reach the best extraction efficiency. The best result was obtained with 2 g of sample, using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibre for 30 min at 30 °C under constant magnetic stirring (800 rpm).After optimization of the extraction methodology, all the cherimoya samples were analysed with the best conditions that allowed to identify about 60 volatile compounds. The major compounds identified in the four cherimoya cultivars were methyl butanoate, butyl butanoate, 3-methylbutyl butanoate, 3-methylbutyl 3-methylbutanoate and 5-hydroxymethyl-2-furfural. These compounds represent 69.08 ± 5.22%, 56.56 ± 15.36%, 56.69 ± 9.28% and 71.82 ± 1.29% of the total volatiles for Funchal, Madeira, Mateus and Perry Vidal cultivars, respectively. This study showed that each cherimoya cultivars have 40 common compounds, corresponding to different chemical families, namely terpenes, esters, alcohols, fatty acids and carbonyl compounds and using PCA, the volatile composition in terms of average peak areas, provided a suitable tool to differentiate among the cherimoya cultivars.  相似文献   

9.
The gastronomic relevance and high price of white truffle are related mainly to its unique aroma. Here we evaluate, for the first time, the possibility of characterizing in a rapid and non-destructive way the aroma of white truffles based on proton transfer reaction mass spectrometry (PTR-MS). We indicate that anonymous PTR-MS fingerprinting allows sample classification and we also compare qualitatively and quantitatively PTR-MS data with measurements made by solid-phase microextraction gas chromatography (SPME-GC) of the same samples under the same conditions. PTR-MS fragmentation data of truffle-relevant compounds are also published here for the first time. Most of the sulfur-containing compounds detected by GC and relevant for white truffle aroma have a high positive correlation with single PTR-MS peaks. Our work indicates that, after preliminary comparison with GC data, PTR-MS is a new tool for the rapid, quantitative and non-invasive characterization of white truffle by direct headspace injection without any pre-concentration.  相似文献   

10.
A method based on solid-phase microextraction (SPME) and gas chromatography with mass spectrometry (GC/MS) for the determination of 18 organophosphorus pesticides (OPPs) in textiles is described. Commercially available SPME fibers, 100 μm PDMS and 85 μm PA, were compared and 85 μm PA exhibited better performance to the OPPs. Various parameters affecting SPME, including extraction and desorption time, extraction temperature, salinity and pH, were studied. The optimized conditions were: 35 min extraction at 25 °C, 5% NaSO4 content, pH 7.0, and 3.5 min desorption in GC injector port at 250 °C. The linear ranges of the SPME-GC/MS method were 0.1-500 μg L−1 for most of the OPPs. The limits of detection (LODs) ranged from 0.01 μg L−1 (for bromophos-ethyl) to 55 μg L−1 (for azinphos-methyl) and the RSDs were between 0.66% and 9.22%. The optimized method was then used to analyze 18 OPPs in textile sample, and the determined recoveries were ranged from 76.7% to 126.8%. Moreover, the distribution coefficients of the OPPs between 85 μm PA fiber and simulative sweat solution (Kpa/s) were determined. The determined Kpa/s of the OPPs correlated well with their octanol-water partition coefficients (r = 0.764 and 0.678) and water solubility (= −0.892 and −0.863).  相似文献   

11.
In this work, a methodology to characterise the volatile and semi-volatile compounds from marine salt by headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC/TOFMS) was developed. Samples from two saltpans of Aveiro, in Portugal, with diverse locations, obtained over three years (2004, 2005, and 2007) were analysed. A 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane SPME fibre was used. The volatiles present in the headspace of the solid salt samples (crystals) were equilibrated overnight at 60 °C and extracted for 60 min prior to injection in the GC × GC/TOFMS. 157 compounds, distributed over the chemical groups of hydrocarbons, aldehydes, esters, furans, haloalkanes, ketones, ethers, alcohols, terpenoids, C13 norisoprenoids, and lactones were detected across the samples. Furans, haloalkanes and ethers were identified for the first time in marine salt. The large number of co-elutions on the first column that were resolved by the GC × GC system revealed the complexity of marine salt volatile composition. The existence of a structured 2D chromatographic behaviour according to volatility, in the first dimension (1D), and primarily polarity, in the second dimension (2D), was demonstrated, allowing more reliable identifications. The resolution and sensitivity of GC × GC/TOFMS enabled the separation and identification of a higher number of volatile compounds compared to GC–qMS, allowing a deeper characterisation of this natural product.  相似文献   

12.
The Dufour's gland content of workers of two ant species of the genus Messor has been analyzed by solid-phase microextraction and gas chromatography with mass spectrometry (GC/MS). The structures of the compounds in the pheromonal mixtures have been determined. In both cases only one intact gland, inserted in a properly dimensioned capillary vial, is sufficient to produce a clean and fully interpretable GC/MS profile. It is worth noting that, for the first time in Messor ants, farnesol has been detected as a minor component of glandular secretion in Messor capitatus.  相似文献   

13.
Solid-phase microextraction (SPME) coupled to gas chromatography/mass spectrometry (GC/MS) has been applied to the analysis of volatile organic compounds emitted from a naturally aged groundwood pulp paper originating from an old book in order to access the products produced through the decomposition reactions occurring in paper upon ageing. Two different extraction methods were developed and compared: headspace SPME and contact SPME. The influence of few extraction parameters were tested in order to define the best extraction conditions. An optimised non-destructive contact SPME method was elaborated and allowed the characterisation of more than 50 individual constituents.  相似文献   

14.
Salvia spp. are used throughout the world both for food and pharmaceutical purposes. In this study, a method involving headspace solid-phase microextraction combined with gas chromatography–mass spectrometry was developed, to establish the volatiles profile of dried leaves of four Iranian Salvia spp.: Salvia officinalis L., Salvia leriifolia Benth, Salvia macrosiphon Boiss. and two ecotypes of Salvia reuterana Boiss. A total of 95 volatiles were identified from the dried leaves of the five selected samples. Specifically, α-thujone was the main component of S. officinalis L. and S. macrosiphon Boiss. (34.40 and 17.84%, respectively) dried leaves, S. leriifolia Benth was dominated by β-pinene (27.03%), whereas α-terpinene was the major constituent of the two ecotypes of S. reuterana Boiss. (21.67 and 13.84%, respectively). These results suggested that the proposed method can be considered as a reliable technique for isolating volatiles from aromatic plants, and for plant differentiation based on the volatile metabolomic profile.  相似文献   

15.
Quantitative properties of solid-phase microextraction (SPME) have been studied in order to investigate a simple and reliable method for analysing volatile flavour components in strawberries. Monitoring the chemical composition profile of berries will be of interest for the producers in order to optimise growth and storage conditions. By the use of SPME and capillary gas chromatography selected standard components were quantified with accuracy within +/-7% and a linear response were found in all concentration ranges studied, covering three orders of magnitude. Equilibrium constants that describe how various components are distributed between the three phases present, sample, headspace and fibre coating were determined. In the system studied, the majority of analytes remained in the sample. This means that repeated analysis can be performed from a single sample without significantly changing the results. The mass transfers of the flavour components, from the sample and into the fibre, were fitted to a transport model assuming that the rate-controlling step is diffusion within the fibre. The experimental results agreed well with the model for most of the components studied. The response for three of the components (geraniol, linalool and trans-2-hexenyl butanoate) did not agree with the model. These components were present in the gas phase in only minute amounts explaining the deviation from the model. Such components will require a long absorption time (longer than 30 min). For quantitative analysis, it is important to use a very precise pre-determined absorption period and well defined sampling conditions. Internal standards can be omitted.  相似文献   

16.
Ectomycorrhizae formation represents one of the most significant steps in the truffle life cycle and is determined by a complex molecular signaling between two symbionts. In order to understand the molecular pathway of ectomycorrhiza development, we focused on the signaling interaction between the ectomycorrhizal fungus Tuber borchii Vittad. and the Tilia americana L. plant roots. The medium of a pre-symbiotic (T. americana-T. borchii) in vitro system was analysed by headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry. In total, 73 volatile organic compounds (VOCs) were identified. Twenty-nine of these VOCs were produced only during the interaction phase between the two partners, leading to a hypothesis that these molecules might act as molecular messengers in order to pilot the ectomycorrhizae formation.  相似文献   

17.
A new method of detection of perfluorocarbon molecules (PFCs) in blood sample has been established. After an extraction and pre-concentration step performed by headspace solid-phase microextraction (HS-SPME), the PFCs are detected by gas chromatography-mass spectrometry (GC/MS) with an ion trap mass spectrometer in MS and MS/MS modes. The influence of different parameters on the SPME process is discussed. The limit of detection and the linearity of the procedure have been determined for two PFCs.  相似文献   

18.
Most water contaminations with volatile organic compounds (VOCs) are traceable to leaking underground fuel reservoirs, solvent storage vessels, agricultural practices, industrial residues, and deficient wastewater treatment and disposal. In order to perform effective monitoring of such organic micropollutants in a straightforward manner, a multiresidue method for the determination of 23 VOCs (trihalomethanes (THMs), BTEX and chlorinated solvents) in water has been developed using solid-phase microextraction (SPME) and capillary gas chromatography–mass spectrometry (GC–MS). This group includes also methyl-tert-butyl ether, epichlorhydrine, and vinyl chloride which present additional analytical difficulties. Three different fibres were assayed: 7-µm polydimethylsiloxane (PDMS), 100-µm PDMS, and 75-µm Carboxen-PDMS, and the extraction conditions were optimized. The best results for the majority of the analytes and mainly for those with the lowest signals were obtained using the Carboxen-PDMS fibre after 15 min of extraction in the headspace mode at a room temperature of 20 ± 2°C. The analytical sensitivity, linearity, precision, accuracy, and uncertainties have been studied for method validation in agreement with the international standard ISO/IEC 17025:2005. The limits of detection achieved with the proposed method (0.06–0.17 µg L?1) are adequate to determine the VOCs at the restrictive levels established by the European legislation. This was a decisive achievement to enable the analysis of all VOCs listed under the drinking-water directive in a single assay. The method exhibits performance capabilities suitable for routine analysis of VOCs in drinking-water by quality-control laboratories as enforced by EU Directives. The method is currently being used for this purpose, and participation in proficiency tests was assessed, with encouraging results.  相似文献   

19.
20.
A new method is described for the qualitative and quantitative analysis of midazolam, a short-acting 1,4-imidazole benzodiazepine, in human plasma. It involves a plasma deproteinization step, solid-phase microextraction (SPME) of midazolam using an 85-microm polyacrylate fiber, and its detection by gas chromatography/mass spectrometry (GC/MS) in selected ion monitoring (SIM) mode, using pinazepam as internal standard. The assay is linear over a midazolam plasma range of 1.5-300 ng/mL, relative intra- and inter-assay standard deviations at 5 ng/mL are below 7%, and the limit of detection is 1 ng/mL. The method is simple, fast and sufficiently sensitive to be applied in clinical and forensic toxicology as well as for purposes of therapeutic drug monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号