首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The applicability range of toughness-and strength-based criteria for progressive cracking of a transverse layer in a cross-ply composite laminate subjected to tensile loading is considered. Using a deterministic cracking model, approximate relations for the crack density as a function of stress are derived for initiation-and propagation-controlled types of cracking. The master-curve approach is applied to progressive cracking in glass/epoxy laminates. The accuracy of estimation of laminate stiffness reduction by using crack density master curves is evaluated. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 5, pp. 633–646, September–October, 2008.  相似文献   

2.
The plasticity theory has been successfully used for describing the nonlinear deformation of laminated composite materials under a monotonically increasing loading. Generally, several tests are needed to determine the parameters of the plastic potential for a laminate. We explore an alternative approach and obtain the plastic potential by using theoretical considerations based on a laminate analysis. The model is shown to provide an accurate prediction for the response of a cross-ply glass/epoxy laminate under uniaxial tensile loading at different angles to the material orthotropy axes. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 3, pp. 309–318, May–June, 2007.  相似文献   

3.
The ultrasonic nondestructive evaluation of composite cylinders requires a thorough understanding of the propagation of waves in these materials. In this paper, the propagation of flexural and longitudinal guided waves in fiber-reinforced composite (FRC) rods with transversely isotropic symmetry properties is studied. The frequency equations obtained for free cylinders and the effect of increased fiber volume fraction (increased anisotropy) on the dispersion characteristics of the rod are explored. The numerical results reveal a number of previously unnoticed characteristics of dispersion curves for composite cylinders. The mode shapes of longitudinal waves propagating in glass/epoxy cylinders are also plotted. These plots can be used to choose an appropriate strategy for inspecting composite cylinders by ultrasonic nondestructive evaluation techniques. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 3, pp. 411–426, May–June, 2007.  相似文献   

4.
Results from an experimental study on the delamination of a unidirectional carbon fiber/epoxy composite by using the four-point bend end-notched flexure (4ENF) test are presented. It was found that the compliance data obtained in load-unload-reload and continuous loading tests were very similar. The R-curves for specimens of different thickness were also found experimentally. These curves showed an appreciable toughening with crack advance, which can be explained by the presence of fiber bridging. The finite-element method with cohesive elements allowing us to model the progressive delamination was used to analyze the 4ENF test. __________ Russian translated published in Mekhanika Kompozitnykh Materialov, Vol. 41, No. 5, pp. 573–584, September–October, 2005.  相似文献   

5.
Mechanics of Composite Materials - The bending stiffness of carbon/epoxy and glass/epoxy cross-ply laminates with intralaminar cracks in the surface 90° plies and local delaminations were...  相似文献   

6.
The interlaminar fracture behavior of unidirectional glass fiber reinforced composites with fiber surface treatment has been investigated in modes I and II and for fixed mode I to mode II ratio of 1.33. The data obtained from these tests have been analyzed by using different analytical approaches. The present investigation is focused on the influence of the glass fiber surface treatment on the interlaminar fracture toughness of unidirectional laminates. Glass fibers with two different fiber surface treatments have been investigated. fiber surface treatment was carried out by using a polyethylene or silane coupling agent in combination with modifying agents. The glass fibers were embedded in the brittle epoxy matrix. Mode I, mode II, and mixed-mode I/II tests were performed in order to determine critical strain energy release rates. Double cantilever beam (DCB), end-notched flexure (ENF), and mixed-mode flexure (MMF) specimens were used. For both types of fiber surface treatment about the same values of mode I initiation fracture toughness GIC init were obtained. It was observed that in mode I interlaminar crack growth in the DCB test for the composite sized by polyethylene, the crack propagation is accompanied by extensive fiber bridging. For both fiber surface treatments interlaminar fracture toughness increases considerably with increasing of crack length. For the fiber surface treatment with the silane coupling agent, the value of mode II initiation fracture toughness GIIC init was about 2.5-times higher in comparison with that of a composite sized by polyethylene. For both types of fiber surface treatments the mixed-mode I/II test has shown a similar behavior to the mode I DCB test.  相似文献   

7.
The behavior of interlaminar fracture of fiber reinforced laminated polymeric composites has been investigated in modes I, II, and different mixed mode I/II ratios. The experimental investigations were carried out by using conventional beam specimens and the compound version of the CTS (compact tension shear) specimen. In this study, a compound version of the CTS specimen is used for the first time to determine the interlaminar fracture toughness of composites. In order to verify the results obtained by the CTS tests, conventional beam tests were also carried out. In the beam tests, specimens of double cantilever beam (DCB) and end notched flexure (ENF) were used to obtain the critical rates of the energy release for failure modes I and II. The CTS specimen is used to obtain different mixed mode ratios, from pure mode I to pure mode II, by varying the loading conditions. The highest mixed mode ratio obtained in the experiment was G I /G II =60. The data obtained from these tests were analyzed by the finite element method. The separated critical rates G I and G II of the energy release were calculated by using the modified virtual crack closure integral (MVCCI) method. The experimental investigations were performed on a unidirectional glass/epoxy composite. The results obtained by the beam and CTS tests were compared. It was found that the interlaminar fracture toughness G IC init of mode I at crack initiation and the corresponding value G II Cinit of mode II obtained by the conventional beam and the CTS tests were in rather good agreement. The experimental results of interlaminar fracture of mixed mode were used to obtain the parameters required for the failure criterion. The two different failure criteria were compared. The best correlation with the experimental data was obtained by using the failure criterion proposed by Wu in 1967 containing linear and quadratic terms of the rates of the energy release.Presented at the 10th International Conference on the Mechanics of Composite Materials (Riga, April 20–23, 1998).Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 3, pp. 307–322, May–June, 1998.  相似文献   

8.
The surface of aramid fibers was modified with a polymer coating — a surface treatment reagent containing epoxy resin. The resulting fibers were examined by using NOL tests, hydroburst tests, and the scanning electron microscopy. The modified fibers had a rougher surface than the untreated ones. The interlaminar shear strength of an aramid-fiber-reinforced epoxy composite was highest when the concentration of polymer coating system was 5%. The translation of fiber strength in an aramid/epoxy composite vessel was improved by 8%. The mechanism of the surface treatment of fibers in improving the mechanical properties of aramid/epoxy composites is discussed. Russian translation publeshed in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 6, pp. 729–738, November–December, 2006.  相似文献   

9.
A model for a macroscopic crack transverse to bridging fibers is developed based upon the Coulomb friction law, instead of the hypothesis of a constant frictional shear stress usually assumed in fiber/matrix debonding and matrix cracking analyses. The Lamé formulation, together with the Coulomb friction law, is adopted to determine the elastic states of fiber/matrix stress transfer through a frictionally constrained interface in the debonded region, and a modified shear lag model is used to evaluate the elastic responses in the bonded region. By treating the debonding process as a particular problem of crack propagation along the interface, the fracture mechanics approach is adopted to formulate a debonding criterion allowing one to determine the debonding length. By using the energy balance approach, the critical stress for propagating a semi-infinite fiber-bridged crack in a unidirectional fiber-reinforced composite is formulated in terms of friction coefficient and debonding toughness. The critical stress for matrix cracking and the corresponding stress distributions calculated by the present Coulomb friction model is compared with those predicted by the models of constant frictional shear stress. The effect of Poisson contraction caused by the stress re distribution between the fiber and matrix on the matrix cracking mechanics is shown and discussed in the present analysis. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 2, pp. 171–190, March–April, 2007.  相似文献   

10.
The crushing behavior of composite tubes in axial impact loading is investigated. Tubes of circular and rectangular cross section are simulated using an LS-DYNA software. The effect of fiber orientation on the energy absorbed in laminated composite tubes is also studied. The results obtained show that rectangular tubes absorb less energy than circular ones, and their maximum crushing load is also lower. The composite tubes with a [+θ/ -θ] lay-up configuration absorb a minimum amount of energy at θ = 15°. The simulation results for a rectangular composite tube with a [+30/–30] lay-up configuration are compared with available experimental data. Cylindrical composite tubes fabricated from woven glass/polyester composites with different lay-ups were also tested using a drop-weight impact tester, and very good agreement between experimental and numerical results is achieved.  相似文献   

11.
Cohesive-zone models have been successfully applied to predicting the damage from notches in engineering materials loaded intension. They have also been used to determine the growth of fibre microbuckling from a hole in a composite laminate under compression. The usual strategy is to replace the in elastic deformation associated with plasticity or microbuckling with a line crack and to assume some form of stress-displacement bridging law across the crack faces. This paper examines recent published experimental data for notched glass-fibre epoxy/honey comb sand wich panels loaded in uniaxial compression. A plastic fibre kinking analysis and a linear softening cohesive-zone model are used for the prediction of the unnotched and open-hole compressive strength and the theoretical results are found to be in a good agreement with experimental data. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 1, pp. 73–84, January–February, 2007.  相似文献   

12.
The first part of the paper deals with homogenization models of unidirectional composites, in which each phase of the material is bounded by parallel cylindrical surfaces. For a GFRP with epoxy resin and glass fibres, five elastic constants for six models of the composite are calculated. In the second part, the results of strain gauge tests, photoelasticity investigations, and scanning electron inspection are discussed. With these data, some elastic constants of the composite in tension and compression are found. A comparison of experimental and analytical results is presented. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 2, pp. 195–206, March–April, 2008.  相似文献   

13.
A masterbatch process based on a minicalander (three-roller mill) and a vacuum dissolver was developed in order to produce multiwall carbon nanotube/epoxy composites with loading fractions of 0.5, 1.0, and 2.0 wt.%. TEM and SEM analyses were performed to investigate the dispersion results. A contrast imaging in the SEM backscattering mode revealed a homogeneous distribution of carbon nanotubes in the whole volume of the material. Furthermore, an interesting correlation was found to exist between the network structure formed by the nanotubes in the epoxy matrix and the appearance of fracture surface of the nanocomposites. Furthermore, the nanocomposites exhibited an electrical conductivity in the regime of some 10−2 S/m. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 5, pp. 567–582, September–October, 2006.  相似文献   

14.
The mixed-mode I + II interlaminar fracture of multidirectional glass/epoxy laminates is investigated. Mixed-mode bending (MMB) tests were performed on specimens with delaminations in 0/θ-type interfaces, with θ varying from 0 to 90°. Preliminary three-dimensional finite-element analyses validated the beam theory model (BTM) used for analysing experimental data. The compliances measured are in a good agreement with BTM predictions. The total critical energy release rate Gc varies linearly with the mode II ratio GII/G, although some discrepancies are observed in the high-mode II results for the 0/45 and 0/90 specimens. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 3, pp. 349–366, May–June, 2007.  相似文献   

15.
The interlaminar fracture and the low-velocity impact behavior of carbon/epoxy composite materials have been studied using width-tapered double cantilever beam (WTDCB), end-notched flexure (ENF), and Boeing impact specimens. The objectives of this research are to determine the essential parameters governing interlaminar fracture and damage of realistic laminated composites and to characterize a correlation between the critical strain energy release rates measured by interlaminar fracture and by low-velocity impact tests. The geometry and the lay-up sequence of specimens are designed to probe various conditions such as the skewness parameter, beam volume, and test fixture. The effect of interfacial ply orientations and crack propagation directions on interlaminar fracture toughness and the effect of ply orientations and thickness on impact behavior are examined. The critical strain energy release rate was calculated from the respective tests: in the interlaminar fracture test, the compliance method and linear beam theory are used; the residual energy calculated from the impact test and the total delamination area estimated by ultrasonic inspection are used in the low-velocity impact test. Results show that the critical strain energy release rate is affected mainly by ply orientations. The critical strain energy release rate measured by the low-velocity impact test lies between the mode I and mode II critical strain energy release rates obtained by the interlaminar fracture test. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Published in Mekhanika Kompozitnykh Materialov, Vol. 36, No. 2, pp. 195–214, March–April, 2000.  相似文献   

16.
The effect of hydrostatic pressure on the fracture toughness of disperse-reinforced composite materials is investigated. It is shown that increased hydrostatic pressure leads to an increase in the critical value of the stress intensity factor and, as a consequence, to an increase in the crack propagation rate. In this case, the pressure-time analogy method can be used to describe the effect of hydrostatic pressure on the characteristics of the crack resistance. This method enables us to represent the experimental data obtained in the form of a generalized dependence of the fracture toughness on the reduced loading rate. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 1, pp. 121–126, January–February, 2000.  相似文献   

17.
Zhu  H.  Guo  Z. X.  Zhu  M.  Cui  J. J.  He  Q.  Li  Y. C. 《Mechanics of Composite Materials》2020,56(2):207-214
Mechanics of Composite Materials - A finite-element (FE) model simulating the elastic behavior of anisotropic glass/epoxy composite laminates subjected to a biaxial tensile loading is proposed. A...  相似文献   

18.
本文对受单向拉伸疲劳载荷的中心斜裂纹L3铝试板进行了研究。根据Erdogan和Sih的最大拉应力理论,推导出以△K作为参变量,以裂纹角β0进行修正的Paris形式的扩展速率表达式。并且进一步论证以更简单的用裂纹长度在x轴上投影的Paris方程来表示。初始裂纹角β0有20°、30°、45°、60°、80°、90°等各种角度,裂纹尖端有经预制疲劳裂纹尖端与未经预制疲劳裂纹尖端两种情况,比较了这两种情况下疲劳扩展轨迹及疲劳扩展速率。  相似文献   

19.
We deal with the thermomechanical response of multilayer satin weave carbon-fiber-reinforced polymer (CFRP) laminates with internal and/or edge cracks and temperature-dependent material properties subjected to tensile loading at cryogenic temperatures. The composite material is assumed to be under the generalized plane strain. Cracks are located in the transverse fiber bundles and extend to the interfaces between two fiber bundles. A finite-element model is employed to study the influence of residual thermal stresses on the mechanical behavior of multilayer CFRP woven laminates with cracks. Numerical calculations are carried out, and Young’s modulus and stress distributions near the crack tip are shown graphically. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 4, pp. 479–492, July–August, 2008.  相似文献   

20.
The initiation of a crack in a sound body is a real issue in the setting of Griffith’s theory of brittle fracture. If one uses the concept of critical energy release rate (Griffith’s criterion), it is in general impossible to initiate a crack. On the other hand, if we replace it by a least energy principle (Francfort–Marigo’s criterion), it becomes possible to predict the onset of cracking in any circumstance. However this latter criterion can appear too strong. We propose here to reinforce its interest by an argument of continuity. Specifically, we consider the issue of the initiation of a crack at a notch whose angle ω is considered as a parameter. The result predicted by the Griffith criterion is not continuous with respect to ω, since no initiation occurs when ω>0 while a crack initiates when ω=0. In contrast, the Francfort–Marigo’s criterion delivers a response which is continuous with respect to ω, even though the onset of cracking is necessarily brutal when ω>0. The theoretical analysis is illustrated by numerical computations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号