首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different wall sections with step shape were applied in the finite element analysis models set up to investigate the effect on low frequency sound field by wall modification. The heights of the step in three cases are taken as equal, random and optimized. The optimized value is obtained by using an optimization process with an objective function of minimum fluctuation in sound field. The frequency responses of rooms with original and modified walls were calculated in a range from 60 Hz to 120 Hz. The results showed that the room with an optimized wall section had the flattest frequency response. Same thing was true as the ratio of the room was changed. The largest improvement on fluctuation reached 4.5 dB. In addition, wall section with semicircle and triangle were studied. The rooms that wall section had optimized radius and heights also gave a better performance than those that had fixed radius and heights. Therefore, it is possible to use optimized wall section to improve low frequency sound field.  相似文献   

2.
C. Hopkins  P. Turner 《Applied Acoustics》2005,66(12):1339-1382
Procedures for the field measurement of airborne sound insulation between rooms with diffuse fields are described in International Standard ISO 140-4. However, many dwellings contain rooms with volumes less than 50 m3, where low frequency measurements are less reliable; hence there is a need for a measurement procedure to improve the reliability of field measurements in rooms with non-diffuse fields. Procedures are proposed for sound pressure level and reverberation time measurements for the 50, 63 and 80 Hz third octave bands. The sound pressure level measurement combines corner microphone positions with positions in the central region of each room. This provides a good estimate of the room average sound pressure level with significantly improved repeatability.  相似文献   

3.
Theoretical models were developed to design self-biased Y-junction circulators operating at ultra high frequency (UHF). The proposed circulator designs consist of insulating nanowires of yttrium iron garnet (YIG) embedded in high permittivity barium-strontium titanate (BSTO) substrates. A design with as many as 105 or greater wires may be considered in its entirety to determine the electromagnetic scattering S-parameters of a circulator design, thus helping to mitigate the computational limitations of the available finite element method (FEM) tools. The approach seeks to represent the nanowires and the BSTO substrate by an equivalent medium with effective properties inclusive of the average saturation magnetization, dynamic demagnetizing fields, and permittivity. The effective medium approach was validated in comparison with the FEM models. Using the proposed approach, a self-biased junction circulator consisting of YIG nanowires embedded in a BSTO substrate was designed and simulated in which the center frequency insertion loss was calculated to be as low as 0.16 dB with isolation of −42.3 dB at 1 GHz. The 20 dB bandwidth was calculated to be 50 MHz. These results suggest that practical self-biased circulators at the UHF band are feasible.  相似文献   

4.
A case study of improving sound energy distribution at low frequency in a small orthogonal room is presented in this paper. The effects of the geometric modifications of wall surface on the sound frequency response have been investigated in depth. In order to find the optimal modifications for the wall surface, an optimization procedure, based on finite element analysis, has been developed. The uniqueness of this method is that it takes both modal redistribution and sound diffusion into account during optimization process. As a result, the promising improvements of sound frequency response have been obtained at the frequencies around 100 Hz in all rooms tested, particularly in those where the serious modal concentrations are met. The maximum reduction of sound fluctuation in such a room could reach a mount of 4.6 dB. The work opens up the possibility of improving low frequency sound quality by a means that considers both modal changing and surface scattering at same time.  相似文献   

5.
This paper presents a methodology to reduce the noise of an axial piston pump through modification of the housing structure, combined with both numerical and experimental methods. The finite element models of the housing and cover are established, and are assembled together. The finite element models are validated and updated using experimental modal analysis. The frequency response function of the assembly is calculated, and the shell element in the inner surfaces of the housing is added. The effects of the thickness of the shell element on the frequency response function are identified. A topology optimization is conducted for the purpose of reducing the frequency response function and the increase of mass. The prototype pump is manufactured and assembled. Different experimental measurements are carried out, including the measurement of the vibration and the distributions of the sound pressure levels around the pump. Results show that the vibration and noise are reduced by using the optimized housing. In particular, the average sound pressure level is reduced by about 2 dB(A) at the discharge pressure of 250 bar, and the sound pressure level at the second harmonic is reduced significantly. The method proposed here can also be used for other kinds of displacement pumps.  相似文献   

6.
The increasing presence of low frequency sources and the lack of acoustic standard measurement procedures make the extension of reverberation time measurements to frequencies below 100 Hz necessary. In typical ordinary rooms with volumes between 30 m3 and 200 m3 the sound field is non-diffuse at such low frequencies, entailing inhomogeneities in space and frequency domains. Presence of standing waves is also the main cause of bad quality of listening in terms of clarity and rumble effects. Since standard measurements according to ISO 3382 fail to achieve accurate and precise values in third octave bands due to non-linear decays caused by room modes, a new approach based on reverberation time measurements of single resonant frequencies (the modal reverberation time) has been introduced. From background theory, due to the intrinsic relation between modal decays and half bandwidth of resonant frequencies, two measurement methods have been proposed together with proper measurement procedures: a direct method based on interrupted source signal method, and an indirect method based on half bandwidth measurements. With microphones placed at corners of rectangular rooms in order to detect all modes and maximize SNRs, different source signals were tested. Anti-resonant sine waves and sweep signal turned out to be the most suitable for direct and indirect measurement methods respectively. From spatial measurements in an empty rectangular test room, comparison between direct and indirect methods showed good and significant agreements. This is the first experimental validation of the relation between resonant half bandwidth and modal reverberation time. Furthermore, comparisons between means and standard deviations of modal reverberation times and standard reverberation times in third octave bands confirm the inadequacy of standard procedure to get accurate and precise values at low frequencies with respect to the modal approach. Modal reverberation time measurements applied to furnished ordinary rooms confirm previous results in the limit of modal sound field: for highly damped modes due to furniture or acoustic treatment, the indirect method is not applicable due to strong suppression of modes and the consequent deviation of the acoustic field from a non-diffuse condition to a damped modal condition, while standard reverberation times align with direct method values. In the future, further investigations will be necessary in different rooms to improve uncertainty evaluation.  相似文献   

7.
A numerical procedure to estimate the transmission loss of sound insulating structures is proposed based upon the technology of acoustic measurements and standards. A virtual laboratory (VL), namely, a numerical representation of a real laboratory consisting of two reverberation rooms meeting certain sound field quality criteria is designed. VL is to be used for the numerical simulation of standardised measurements under predefined, controlled, acoustic conditions. In this paper, the design and optimisation of VL is investigated. The geometry of the transmission rooms is designed following first principles, in order for diffuse field conditions and sufficiently smooth primary mode distribution in the low frequency to be achieved. A finite element-based optimisation procedure, introduced by the author in previous work, is extended to arbitrarily shaped rooms. It is used to predict the appropriate local geometric modifications so as for improved mode distribution and smoother sound pressure fluctuations of the transmission rooms in the low-frequency range to be achieved and low-frequency measurement reproducibility and accuracy to be increased. Steady-state acoustic response analysis is performed in order to quantify the acoustic field quality of the virtual transmission rooms in the frequency range of measurements. A method to calculate the total absorption, A, of the receiving room is introduced by simulation of the reverberation time measurement procedure using Transient acoustic response analysis. The acoustic performance of VL is overall considered and is shown to meet in a sufficient degree, relative laboratory measurement standards in the frequency range of 100÷704 Hz.  相似文献   

8.
Low frequency behavior in small rooms is always a critical issue, but the recent extension of several standards to frequencies as low as 50 Hz opened an interesting debate in the scientific community as to which is the best (and most reliable) method to perform measurements. The present paper discusses the low frequency qualification of a typical reverberant test room in order to perform sound power measurements (carried out according to ISO 3741), by taking advantage of a finite element model of the room. Experimental measurements were first carried out in a standard reverberant chamber to demonstrate that the model provides accurate results in the range below 100 Hz. Statistical analysis of the results from measurements and simulations confirmed that, despite some small inaccuracies, the predicted results are in very good agreement with those measured both in terms of spectra and spatial distribution of the sound pressure level. Finally, the different steps of the low-frequency qualification of a reverberant test room are discussed. A selection procedure of the most suitable microphone positions is proposed, based on the results of the simulation, and, finally, on site measurements were carried out to validate the procedure.  相似文献   

9.
A simple genetic algorithm is implemented to perform multi parameter optimization of Raman Fiber Amplifier for 100 channel S band dense wavelength division multiplexed system at 25 GHz interval. A cost effective system using single Raman pump is investigated aiming at maximum average gain. The single counter propagating pump is optimized to frequency of 211.528 THz and 652.93 mW power level with optimum Raman fiber length of 44.064 Km. There is evidence to show that the optimum solution presents a small gain variation (less than 3 dB) over an effective bandwidth covering 197–199.475 THz. The optimized configuration enabled an adequate system performance in terms of acceptable Q-factor (19.52 dB) and BER (1.46 × 10−21).  相似文献   

10.
In this work, a optical-fiber air-backed mandrel hydrophone is proposed and investigated both analytically and experimentally. The two-dimensional and three-dimensional quasistatically theoretical models of the hydrophone is created and compared, and the phase sensitivity of the hydrophone is analyzed. The theoretical result of phase sensitivity with three-dimensional model is −153.3 dB re rad/μPa. Twenty-two hydrophones of this type according to the model presented are constructed and tested. The experiment results show that experimental results of mean values of phase sensitivity are about −153 ± 0.5 dB re rad/μPa and have the close agreement with the estimation of theoretical models. The size of the fiber sensor is ∅12 × 55 mm, the normal phase sensitivity achieves −308 dB re 1 μPa−1, the 3 dB effective bandwidth of the frequency response is 30 kHz, and the responsivity decreases less than 0.5 dB when static pressure is 2 MPa (200 m water depth). The hydrophone is easy to constructed at low cost with simple structure, and some new type of it with the required performances could be designed according to the model presented.  相似文献   

11.
The performance of one-dimensional (1D) coupled cavities photonic crystal (PC) filters has been analyzed by finite-difference time-domain (FDTD) simulation. It is shown that the addition of tapered Bragg mirrors at each side of the cavities, to create near-Gaussian field profiles for the cavity modes, results in the prediction of near flat-top passband filters with high out-of-band rejection ratio and near unity transmission. The tapered structures suppress the vertical radiation loss to allow optimization of the number of mirror periods for the best filter response whilst guaranteeing high transmission. A critical coupling condition (k = 2Lout/Lin = 1) for flat-top responses in doubly coupled cavities filters is proposed in the tapered structures. An optimized filter for 100 GHz optical communication system are demonstrated with 1 dB bandwidth of 0.17 nm, roll-off of 0.6 dB/GHz, out-of-band signal rejection of 33 dB and transmission of 95%. Further improvement of roll-off and out-of-band rejection is demonstrated in a triply coupled cavities filter.  相似文献   

12.
A novel technique and related formulations are proposed for analyzing the influences of the skin-effect on the performances of a polymer Y-fed coupler electro-optic modulator with shielded push-pull micro-strip electrodes. Using the extended point-matching method, coupled mode theory and electro-optic modulation theory, thorough design and optimization are performed. By introducing the effective applied voltage, formulas of the high-frequency response under skin-effect are deduced, and characteristics under skin-effect are analyzed. Under the central wavelength of 1550 nm, the half-wave voltage is as low as 1.097 V for the device with an active region length about 8.884 mm. Considering the influences of the skin-effect, the 3-dB modulating bandwidth of the microwave signal is up to 94 GHz. A high extinction ratio of more than 20 dB and a low insertion loss of less than 4.18 dB are achieved when the microwave frequency is below 68 GHz under skin-effect. This design technique is proven to be accurate by the comparison with the beam propagation method (BPM).  相似文献   

13.
The 60-GHz band of 16O2 was studied at room temperature and at low (up to 4 Torr) and atmospheric pressures. Precision measurement of central frequencies, self-broadening, and N2-broadening parameters of fine-structure transitions up to N = 27 was performed by use of a spectrometer with radio-acoustic detection (RAD). The measured parameters are compared with GEISA/HITRAN databanks, MPM92, and other known data. An improved set of the oxygen fine-structure spectroscopic constants is obtained. The absorption profile was recorded in the range 45-96 GHz for laboratory air and pure oxygen at atmospheric pressure by use of a resonator spectrometer with noise level of about ± 0.05 dB/km, and used for deducing the first-order line mixing coefficients and for quantitative assessment of second-order mixing effects. A refined set of MPM parameters is derived from the new data and presented here.  相似文献   

14.
A soft glass dual core polarization splitter based on highly birefringent photonic crystal fiber (PCF) is proposed and the full vector finite element method (FEM) is employed to analyze the impacts of structural parameters on birefringence and the coupling length, and simulation results show that high birefringence on the order of 10−2 can be obtained at 1.55 μm, moreover, hole size, hole pitch and elliptic ratio all affect birefringence and the coupling length. Based on these results, the PCF's structure is optimized to realize a polarization splitter of 282 μm whose largest extinction ratio is around −45.42 dB at 1.55 μm. Meanwhile, the bandwidth at the extinction ratio of −10 dB is about 90 nm, and around 32 nm at −20 dB.  相似文献   

15.
Wen-Yuan Deng  De-Gui Sun  Wu Xu 《Optik》2009,120(4):188-194
A new 1×32 wavelength de-multi/multiplexer utilizing the microring resonator and interleave filter is proposed in this paper. A novel formula of transfer functions is presented, the parameters of microring are optimized, and the transmission characteristics of the system are analyzed. The channel spacing of the presented device is 0.4 nm. The analytical result shows that the crosstalk between adjacent channels can be reduced greatly and the filter response of the device can be improved by using the interleave filter. A bandwidth (3 dB) of 0.21 nm, an insertion loss less than 1.1 dB, and crosstalk below −32 dB were obtained for the optimized device. A method for compensating the manufacturing tolerances is discussed.  相似文献   

16.
提出了一种利用多模耦合实现低频、宽带、大功率特性的新结构Ⅲ型弯张换能器。通过在压电陶瓷堆内部嵌入与凹型弯张壳体相连的弹性辅助弯曲梁结构,并用弯曲圆盘作为顶部自由端盖,增加有效工作模态。利用有限元方法对换能器进行了设计优化,分析结果显示换能器在低频段存在4个主要工作模态。根据优化结果,加工制作了换能器样机,水池实验的测试结果表明:在1.5~5.5 kHz范围内,换能器样机的发送电压响应均大于135 dB;1.5~4 kHz内的最大发送电压响应大于142 dB,响应起伏小于6 dB。研究结果表明自由端盖Ⅲ型弯张换能器不仅能够在小尺寸设计下实现大功率工作,还能获得低频宽带发射性能。   相似文献   

17.
强吸收-强反射型听音室声场的有限元优化   总被引:1,自引:0,他引:1  
为获得听音室预期的平直混响时间和合适的房间形状,提出了一种结合强吸收-强反射概念和有限元优化技术的设计方法,并进行了实验验证。对按照优化设计结果所搭建的听音室的房间频率响应、混响时间进行了实际测量,实测数据显示了与解析计算、数值模拟结果有着较好的吻合。在整个设计频段内混响时间特性曲线平直,优化后房间低频段两个倍频程内频率响应的标准偏差可降低约6dB。1/3倍频程中心频率上实测混响时间的方均根值和设计值的偏差在63至4 kHz的6个倍频程内仅为0.02 s。   相似文献   

18.
The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0-20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<−5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<−5 dB and RL<−8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was −29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites.  相似文献   

19.
An initial value determination method with a contraction factor for the counter-pumped Raman coupled equations is proposed. This method is used in conjunction with initial guess correction mechanism of Newton's method to construct a new efficient shooting algorithm for the solution of counter-pumped Raman coupled equations. The particle'swarm optimization is used to find the optimal wavelengths and powers for the pumps. By combining the new shooting algorithm and particle swarm optimization a powerful approach to the design of gain spectra for Raman fiber amplifiers is developed. Using this approach a counter-pumped broadband Raman fiber amplifier in C + L-band is designed and optimized. An average on-off gain of 9.3 dB for a bandwidth of 95 nm is obtained using only 4 pumps, with an in-band ripple level of ± 0.7 dB.  相似文献   

20.
We investigate the effects of low cut-off frequency of optical receiver on the performance of lightwave systems. The results show that we can reduce the tone-induced power penalty by ∼0.8 dB (tone frequency = 1 MHz) using a high-pass filter in the optical receiver. In addition, our calculation shows that the power penalty can be negligible (<0.1 dB) even when the low cut-off frequency of the 10 Gb/s optical receiver is increased up to ∼10 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号