首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Copper-based tandem schemes have emerged as promising strategies to promote the formation of multi-carbon products in the electrocatalytic CO2 reduction reaction. In such approaches, the CO-generating component of the tandem catalyst increases the local concentration of CO and thereby enhances the intrinsic carbon–carbon (C–C) coupling on copper. However, the optimal characteristics of the CO-generating catalyst for maximizing the C2 production are currently unknown. In this work, we developed tunable tandem catalysts comprising iron porphyrin (Fe-Por), as the CO-generating component, and Cu nanocubes (Cucub) to understand how the turnover frequency for CO (TOFCO) of the molecular catalysts impacts the C–C coupling on the Cu surface. First, we tuned the TOFCO of the Fe-Por by varying the number of orbitals involved in the π-system. Then, we coupled these molecular catalysts with the Cucub and assessed the current densities and faradaic efficiencies. We discovered that all of the designed Fe-Por boost ethylene production. The most efficient Cucub/Fe-Por tandem catalyst was the one including the Fe-Por with the highest TOFCO and exhibited a nearly 22-fold increase in the ethylene selectivity and 100 mV positive shift of the onset potential with respect to the pristine Cucub. These results reveal that coupling the TOFCO tunability of molecular catalysts with copper nanocatalysts opens up new possibilities towards the development of Cu-based catalysts with enhanced selectivity for multi-carbon product generation at low overpotential.

Coupling the tunability of molecular catalysts and copper nanocatalysts opens up new possibilities towards the development of Cu-based catalysts with enhanced selectivity for multi-carbon product generation at low overpotential.  相似文献   

2.
Remote directing groups in a bifunctional molecule do not always behave independently of one another in C–H activation chemistries. A combined DFT and experimental mechanistic study to provide enhanced Ir catalysts for chemoselective C–H deuteration of bifunctional aryl primary sulfonamides is described. This provides a pharmaceutically-relevant and limiting case study in using binding energies to predict intramolecular directing group chemoselectivity. Rational catalyst design, guided solely by qualitative substrate–catalyst binding free energy predictions, enabled intramolecular discrimination between competing ortho-directing groups in C–H activation and delivered improved catalysts for sulfonamide-selective C–H deuteration. As a result, chemoselective binding of the primary sulfonamide moiety was achieved in the face of an intrinsically more powerful pyrazole directing group present in the same molecule. Detailed DFT calculations and mechanistic experiments revealed a breakdown in the applied binding free energy model, illustrating the important interconnectivity of ligand design, substrate geometry, directing group cooperativity, and solvation in supporting DFT calculations. This work has important implications around attempts to predict intramolecular C–H activation directing group chemoselectivity using simplified monofunctional fragment molecules. More generally, these studies provide insights for catalyst design methods in late-stage C–H functionalisation.

In C–H activation chemistries, the interpretation of the influence of remote directing groups in a bifunctional molecule depends on the in silico method used to inform catalyst design.  相似文献   

3.
Transition-metal-catalysed carbene insertion reaction is a straightforward and efficient protocol for the construction of carbon–carbon or carbon–heteroatom bonds. Compared to the intensively studied and well-established “common” carbene insertion reactions, including carbene insertion into C–H, Si–H, N–H, O–H, and S–H bonds, several “uncommon” carbene insertion reactions, including carbene insertion into B–H, Sn–H, Ge–H, P–H, F–H, C–C, and M–M bonds, have been neglected for a long time. However, more and more studies on uncommon carbene insertion reactions have been disclosed recently, and clearly demonstrate the great synthetic potential of these reactions. The current perspective reviews the history and the newest advances of uncommon carbene insertion reactions, discusses their potential applications and challenges, and also presents an outlook of this promising field.

Transition-metal-catalysed carbene insertion reaction is a straightforward and efficient protocol for the construction of carbon–carbon or carbon–heteroatom bonds.  相似文献   

4.
The excellent functional group tolerance of the Suzuki–Miyaura cross-coupling reactions has been decisive for their success in the pharmaceutical industry. Highly diversified (hetero)aromatic scaffolds can be effectively coupled in the final step(s) of a convergent synthetic route. In contrast, electrophilic Pd catalysts for non-directed C–H activation are particularly sensitive to inhibition by coordinating groups in pharmaceutical precursors. While C–H arylation enables the direct conversion of (hetero)aromatics without preinstalled functional or directing groups, its functional group tolerance should be increased to be viable in late-stage cross-couplings. In this work, we report on a dual ligand approach that combines a strongly coordinating phosphine ligand with a chelating 2-hydroxypyridine for the highly robust C–H coupling of bicyclic N-heteroaromatics with aryl bromide scaffolds. The catalyst speciation was studied via in situ XAS measurements, confirming the coordination of both ligands under the reaction conditions. The C–H activation catalyst was shown to be tolerant to a wide range of pharmaceutically relevant scaffolds, including examples of late-stage functionalization of known drug molecules.

Ligand combination of a 2-pyridone with traditional phosphines enables superior functional group tolerance in the C–H (hetero)arylation of pharmaceutically relevant N-heterocyclic scaffolds.  相似文献   

5.
The design of catalysts for the chemical recycling of plastic waste will benefit greatly from an intimate knowledge of the interfacial polymer–catalyst interactions that determine reactant and product distributions. Here, we investigate backbone chain length, side chain length, and concentration effects on the density and conformation of polyethylene surrogates at the interface with Pt(111) and relate them to experimental product distributions resulting from carbon–carbon bond cleavage. Using replica-exchange molecular dynamics simulations, we characterize the polymer conformations at the interface by the distributions of trains, loops, and tails and their first moments. We find that the preponderance of short chains, in the range of 20 carbon atoms, lies entirely on the Pt surface, whereas longer chains exhibit much broader distributions of conformational features. Remarkably, the average length of trains is independent of the chain length but can be tuned via the polymer–surface interaction. Branching profoundly impacts the conformations of long chains at the interface as the distributions of trains become less dispersed and more structured, localized around short trains, with the immediate implication of a wider carbon product distribution upon C–C bond cleavage. The degree of localization increases with the number and size of the side chains. Long chains can adsorb from the melt onto the Pt surface even in melt mixtures containing shorter polymer chains at high concentrations. We confirm experimentally key computational findings and demonstrate that blends may provide a strategy to reduce the selectivity for undesired light gases.

The design of catalysts for the chemical recycling of plastic waste will benefit greatly from an intimate knowledge of the interfacial polymer–catalyst interactions that determine reactant and product distributions.  相似文献   

6.
We report herein on nickel-catalyzed carbon–carbon bond cleavage reactions of 2,4,6-cycloheptatrien-1-one (tropone) derivatives. When a Ni/N-heterocyclic carbene catalyst is used, decarbonylation proceeds with the formation of a benzene ring, while the use of bidentate ligands in conjunction with an alcohol additive results in a two-carbon ring contraction with the generation of cyclopentadiene derivatives. The latter reaction involves a nickel–ketene complex as an intermediate, which was characterized by X-ray crystallography. The choice of an appropriate ligand allows for selective synthesis of four different products via the cleavage of a seven-membered carbocyclic skeleton. Reaction mechanisms and ligand-controlled selectivity for both types of ring contraction reactions were also investigated computationally.

We report on C–C bond cleavage reactions of tropone derivatives by nickel catalysis. A single tropone derivative can be diversified into four different products with different ring skeletons by the judicious choice of the ligand.  相似文献   

7.
将储量丰富的生物质及其衍生物转化为具有高附加值的燃料和化学品被认为是一种有前景的绿色途径,可以极大地减少人们对传统化石资源的依赖.作为木质纤维素热解的直接产物和生物油升级的模型化合物,香草醛可以通过加氢脱氧(HDO)过程选择性地转化为2-甲氧基-4-甲基苯酚(MMP).MMP是一种有价值的化学品,常用于香料和药物等重要中间体的合成.在过去十年里,大量的金属催化剂被用来催化香草醛HDO转化为MMP.其中,贵金属(Pt,Pd,Ru和Au)虽然活性高,但是其储量低、价格昂贵,不利于工业化应用;而非贵金属(Fe,Co,Ni和Cu)的催化活性普遍较低,需要苛刻的反应条件来提高转化效率和选择性.此外,这类HDO反应大都在有机溶剂中进行,容易造成环境污染.因此,开发高效、稳定的非贵金属催化剂用于水相HDO反应是一个巨大的挑战.一般来说,合金纳米颗粒(NPs)具有强烈的协同效应,能产生良好的配位结构和电子环境,从而显著提升催化活性和选择性.基于此,本文首次采用了一种简单可控的合成方法来制备三聚氰胺海绵负载的氮掺杂碳纳米管(N-CNTs)限域的Ni-Co合金NPs(NiCo@N-CNTs/CMF)催化剂.该催化剂具有优异的HDO性能,在2 MPa H2,120oC反应6 h条件下,能在水相中将生物质衍生的香草醛高效转化为MMP,转化率和选择性均达到100%.相比于单金属的Ni@N-CNTs/CMF和Co@N-CNTs/CMF催化剂,香草醛转化率和MMP选择性都有大幅度的提高.而且,在温和的反应条件下,该催化剂对香草醛衍生物和其他芳香醛类化合物同样表现出优异的HDO性能,拥有100%的转化率以及较高的MMP选择性(91.5%~100%).XPS结果表明,Ni-Co形成合金后发生了电子结构的偏移,即Co原子可以从邻近的Ni原子处得到电子,提高Co电子云密度,从而促进对香草醛中C=O键的吸附.DFT计算结果表明,相比于单金属的Ni和Co,Ni-Co合金化后能显著提高对C=O键的选择性吸附和活化.同时,H2解离后形成的活性H*物种在Ni-Co合金NPs表面更容易脱附并参与催化反应.因此,Ni-Co@N-CNTs/CMF催化剂优异的HDO性能主要是由于Ni-Co合金NPs的协同作用大大促进了其对C=O键的选择性吸附和活化,以及活化氢物种的脱附.本文为设计和制备高效的非贵金属催化剂应用于水相的HDO反应提供了一个新策略.  相似文献   

8.
Photochemistry provides a sustainable pathway for organic transformations by inducing radical intermediates from substrates through electron transfer process. However, progress is limited by heterogeneous photocatalysts that are required to be efficient, stable, and inexpensive for long-term operation with easy recyclability and product separation. Here, we report that boron carbonitride (BCN) ceramics are such a system and can reduce organic halides, including (het)aryl and alkyl halides, with visible light irradiation. Cross-coupling of halides to afford new C–H, C–C, and C–S bonds can proceed at ambient reaction conditions. Hydrogen, (het)aryl, and sulfonyl groups were introduced into the arenes and heteroarenes at the designed positions by means of mesolytic C–X (carbon–halogen) bond cleavage in the absence of any metal-based catalysts or ligands. BCN can be used not only for half reactions, like reduction reactions with a sacrificial agent, but also redox reactions through oxidative and reductive interfacial electron transfer. The BCN photocatalyst shows tolerance to different substituents and conserved activity after five recycles. The apparent metal-free system opens new opportunities for a wide range of organic catalysts using light energy and sustainable materials, which are metal-free, inexpensive and stable.

A metal-free photoredox system was introduced for the transformation of organic halides to afford C–H, C–C, and C–S bonds without the addition of any metals, ligands, extra reductants or additives.  相似文献   

9.
Selective condensation/bicycloaromatization of two different arylalkynes is firstly developed under ligand-free copper(i)-catalysis, which allows the direct synthesis of C–N axial biaryl compounds in high yields with excellent selectivity and functional group tolerance. Due to the critical effects of Cu(i) catalyst and HFIP, many easily occurring undesired reactions are suppressed, and the coupled five–six aromatic rings are constructed via the selective formation of two C(sp2)–N(sp2) bonds and four C(sp2)–C(sp2) bonds. The achievement of moderate enantioselectivity verifies its potential for the simplest asymmetric synthesis of atropoisomeric biaryls. Western blotting demonstrated that the newly developed compounds are promising targets in biology and pharmaceuticals. This unique reaction can construct structurally diverse C–N axial biaryl compounds that have never been reported by other methods, and might be extended to various applications in materials, chemistry, biology, and pharmaceuticals.

Selective condensation/bicycloaromatization of two different arylalkynes is firstly developed under ligand-free copper(i)-catalysis, which allows the direct synthesis of C–N axial biaryl compounds in high yields with excellent selectivity and functional group tolerance.  相似文献   

10.
C(sp3)–H functionalization methods provide an ideal synthetic platform for medicinal chemistry; however, such methods are often constrained by practical limitations. The present study outlines a C(sp3)–H isocyanation protocol that enables the synthesis of diverse, pharmaceutically relevant benzylic ureas in high-throughput format. The operationally simple C–H isocyanation method shows high site selectivity and good functional group tolerance, and uses commercially available catalyst components and reagents [CuOAc, 2,2′-bis(oxazoline) ligand, (trimethylsilyl)isocyanate, and N-fluorobenzenesulfonimide]. The isocyanate products may be used without isolation or purification in a subsequent coupling step with primary and secondary amines to afford hundreds of diverse ureas. These results provide a template for implementation of C–H functionalization/cross-coupling in drug discovery.

A copper-based catalyst system composed of commercially available reagents enables C–H isocyanation with exquisite (hetero)benzylic site selectivity, enabling high-throughput access to pharmaceutically relevant ureas via coupling with amines.  相似文献   

11.
The complex interaction between molecules and catalyst surfaces leads to great difficulties in understanding and predicting the activity and selectivity in heterogeneous catalysis. Here we develop an end-to-end artificial intelligence framework for the activity prediction of heterogeneous catalytic systems (AI-Cat method), which takes simple inputs from names of molecules and metal catalysts and outputs the reaction energy profile from the input molecule to low energy pathway products. The AI-Cat method combines two neural network models, one for predicting reaction patterns and the other for providing the reaction barrier and energy, with a Monte Carlo tree search to resolve the low energy pathways in a reaction network. We then apply AI-Cat to resolve the reaction network of glycerol hydrogenolysis on Cu surfaces, which is a typical selective C–O bond activation system and of key significance for biomass-derived polyol utilization. We show that glycerol hydrogenolysis features a huge reaction network of relevant candidates, containing 420 reaction intermediates and 2467 elementary reactions. Among them, the surface-mediated enol–keto tautomeric resonance is a key step to facilitate the primary C–OH bond breaking and thus selects 1,2-propanediol as the major product on Cu catalysts. 1,3-Propanediol can only be produced under strong acidic conditions and high surface H coverage by following a hydrogenation–dehydration pathway. AI-Cat further discovers six low-energy reaction patterns for C–O bond activation on metals that is of general significance to polyol catalysis. Our results demonstrate that the reaction prediction for complex heterogeneous catalysis is now feasible with AI-based atomic simulation and a Monte Carlo tree search.

An end-to-end artificial intelligence framework for the activity prediction of heterogeneous catalytic systems (AI-Cat method) is developed and applied for resolving the selectivity of glycerol hydrogenolysis on Cu catalysts.  相似文献   

12.
Understanding the catalyst compositional and structural features that control selectivity is of uttermost importance to target desired products in chemical reactions. In this joint experimental–computational work, we leverage tailored Cu/ZnO precatalysts as a material platform to identify the intrinsic features of methane-producing and ethanol-producing CuZn catalysts in the electrochemical CO2 reduction reaction (CO2RR). Specifically, we find that Cu@ZnO nanocrystals, where a central Cu domain is decorated with ZnO domains, and ZnO@Cu nanocrystals, where a central ZnO domain is decorated with Cu domains, evolve into Cu@CuZn core@shell catalysts that are selective for methane (∼52%) and ethanol (∼39%), respectively. Operando X-ray absorption spectroscopy and various microscopy methods evidence that a higher degree of surface alloying along with a higher concentration of metallic Zn improve the ethanol selectivity. Density functional theory explains that the combination of electronic and tandem effects accounts for such selectivity. These findings mark a step ahead towards understanding structure–property relationships in bimetallic catalysts for the CO2RR and their rational tuning to increase selectivity towards target products, especially alcohols.

A higher degree of surface alloying and Zn concentration boosts the selectivity towards ethanol of CuZn catalysts in CO2 electroreduction.  相似文献   

13.
The direct conversion of methane to high-value chemicals is an attractive process that efficiently uses abundant natural/shale gas to provide an energy supply. The direct conversion of methane to high-value chemicals is an attractive process that efficiently uses abundant natural/shale gas to provide an energy supply. Among all the routes used for methane transformation, nonoxidative conversion of methane is noteworthy owing to its highly economic selectivity to bulk chemicals such as aromatics and olefins. Innovations in catalysts for selective C–H activation and controllable C–C coupling thus play a key role in this process and have been intensively investigated in recent years. In this review, we briefly summarize the recent advances in conventional metal/zeolite catalysts in the nonoxidative coupling of methane to aromatics, as well as the newly emerging single-atom based catalysts for the conversion of methane to olefins. The emphasis is primarily the experimental findings and the theoretical understanding of the active sites and reaction mechanisms. We also present our perspectives on the design of catalysts for C–H activation and C–C coupling of methane, to shed some light on improving the potential industrial applications of the nonoxidative conversion of methane into chemicals.

The direct conversion of methane to high-value chemicals is an attractive process that efficiently uses abundant natural/shale gas to provide an energy supply.  相似文献   

14.
Low-temperature and selective reductive amination of carbonyl compounds is a highly promising approach to access primary amines. However, it remains a great challenge to conduct this attractive route efficiently over earth-abundant metal-based catalysts. Herein, we designed several Co-based catalysts (denoted as Co@C–N(x), where x represents the pyrolysis temperature) by the pyrolysis of the metal–organic framework ZIF-67 at different temperatures. Very interestingly, the prepared Co@C–N(800) could efficiently catalyze the reductive amination of various aldehydes/ketones to synthesize the corresponding primary amines with high yields at 35 °C. Besides non-noble metal and mild temperature, the other unique advantage of the catalyst was that the substrates with different reduction-sensitive groups could be converted into primary amines selectively because the Co-based catalyst was not active for these groups at low temperature. Systematic analysis revealed that the catalyst was composed of graphene encapsulated Co nanoparticles and atomically dispersed Co–Nx sites. The Co particles promoted the hydrogenation step, while the Co–Nx sites acted as acidic sites to activate the intermediate (Schiff base). The synergistic effect of metallic Co particles and Co–Nx sites is crucial for the excellent performance of the catalyst Co@C–N(800). To the best of our knowledge, this is the first study on efficient synthesis of primary amines via reductive amination of carbonyl compounds over earth-abundant metal-based catalysts at low temperature (35 °C).

An earth-abundant Co-based catalyst, Co@C–N(800), could efficiently catalyze the reductive amination of carbonyl compounds into primary amines at 35 °C owing to the synergistic effect of Co nanoparticles and atomically dispersed Co–Nx sites.  相似文献   

15.
Selective carbon–carbon bond activation is important in chemical industry and fundamental organic synthesis, but remains challenging. In this study, non-polar unstrained Csp2–Csp3 and Csp2–Csp2 bond activation was achieved by B(OMe)3/B2pin2-mediated fragmentation borylation. Various indole derivatives underwent C2-regioselective C–C bond activation to afford two C–B bonds under transition-metal-free conditions. Preliminary mechanistic investigations suggested that C–B bond formation and C–C bond cleavage probably occurred in a concerted process. This new reaction mode will stimulate the development of reactions based on inert C–C bond activation.

Non-polar unstrained Csp2–Csp3 and Csp2–Csp2 bond activation was achieved via B(OMe)3/B2pin2-mediated fragmentation borylation, in which C–C bond activation occurred regioselectively at the C2-position in various substituted indoles.  相似文献   

16.
This work establishes structure–property relationships in Ru-based catalytic systems for selective hydrodeoxygenation of ketones to alkenes by combining extensive catalytic testing, in situ X-ray absorption spectroscopy (XAS) under high pressures and temperatures and ex situ XAS structural characterization supported by density functional theory (DFT) calculations. Catalytic tests revealed the difference in hydrogenation selectivity for ketones (exemplified by acetone) or alkenes (exemplified by propene) upon changing the reaction conditions, more specifically in the presence of CO during a pretreatment step. XAS data demonstrated the evolution of the local ruthenium structure with different amounts of Cl/Br and CO ligands. In addition, in the absence of CO, the catalyst was reduced to Ru0, and this was associated with a significant decrease of the selectivity for ketone hydrogenation. For the Ru–bromide carbonyl complex, selectivity towards acetone hydrogenation over propene hydrogenation was explained on the basis of different relative energies of the first intermediate states of each reaction. These results give a complete understanding of the evolution of the Ru species, used for the catalytic valorization of biobased polyols to olefins in ionic liquids, identifying the undesired deactivation routes as well as possibilities for reactivation.

This work establishes structure–property relationships in Ru-based catalytic systems for the selective hydrodeoxygenation of ketones to alkenes.  相似文献   

17.
Recent efforts to design selective catalysts for multi-step reactions, such as hydrodeoxygenation (HDO), have emphasized the preparation of active sites at the interface between two materials having different properties. However, achieving precise control over interfacial properties, and thus reaction selectivity, has remained a challenge. Here, we encapsulated Pd nanoparticles (NPs) with TiO2 films of regulated porosity to gain a new level of control over catalyst performance, resulting in essentially 100 % HDO selectivity for two biomass-derived alcohols. This catalyst also showed exceptional reaction specificity in HDO of furfural and m-cresol. In addition to improving HDO activity by maximizing the interfacial contact between the metal and metal oxide sites, encapsulation by the nanoporous oxide film provided a significant selectivity boost by restricting the accessible conformations of aromatics on the surface.  相似文献   

18.
We report a diastereoconvergent synthesis of anti-1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C–H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide. Destruction of the allylic stereocenter during the selenium-catalyzed process allows selective formation of a single diastereomer of the product starting from any diastereomeric mixture of the starting homoallylic alcohol derivatives, eliminating the need for the often-challenging diastereoselective preparation of starting materials. Mechanistic studies show that the diastereoselectivity is controlled by a stereoelectronic effect (inside alkoxy effect) on the transition state of the final [2,3]-sigmatropic rearrangement, leading to the observed anti selectivity. The power of this protocol is further demonstrated on an extension to the synthesis of syn-1,4-amino alcohols from allylic alcohol derivatives, constituting a rare example of 1,4-stereoinduction.

We report a diastereoconvergent synthesis of anti-1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C–H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide.  相似文献   

19.
Cyclobutenes as versatile and highly valuable synthons have been widely applied in synthesis. Although various methods for their synthesis have been well established, new strategies for the construction of the cyclobutene skeleton from simple substrates are still highly desirable. Starting from simple cyclobutanes, the construction of the cyclobutene skeleton especially introducing multiple functional groups simultaneously had never been achieved. Here, we developed a novel radical cascade strategy for the synthesis of highly functionalized cyclobutenes directly from cyclobutanes involving rare cleavage of four or five C–H bonds and formation of two C–N/C–S or three C–Br bonds. With copper as catalyst and N-fluorobenzenesulfonimide (NFSI) as oxidant, a wide range of diaminated, disulfonylated and tribrominated cyclobutene derivatives were efficiently synthesized.

A novel radical cascade strategy for the synthesis of highly functionalized cyclobutenes directly from cyclobutanes involving rare four or five C–H bonds cleavage and two C–N/C–S or three C–Br bonds formation has been successfully developed.  相似文献   

20.
Formate and CO are competing products in the two-electron CO2 reduction reaction (2e CO2RR), and they are produced via *OCHO and *COOH intermediates, respectively. However, the factors governing CO/formate selectivity remain elusive, especially for metal–carbon–nitrogen (M–N–C) single-atom catalysts (SACs), most of which produce CO as their main product. Herein, we show computationally that the selectivity of M–N–C SACs is intrinsically associated with the CO2 adsorption mode by using bismuth (Bi) nanosheets and the Bi–N–C SAC as model catalysts. According to our results, the Bi–N–C SAC exhibits a strong thermodynamic preference toward *OCHO, but under working potentials, CO2 is preferentially chemisorbed first due to a charge accumulation effect, and subsequent protonation of chemisorbed CO2 to *COOH is kinetically much more favorable than formation of *OCHO. Consequently, the Bi–N–C SAC preferentially produces CO rather than formate. In contrast, the physisorption preference of CO2 on Bi nanosheets contributes to high formate selectivity. Remarkably, this CO2 adsorption-based mechanism also applies to other typical M–N–C SACs. This work not only resolves a long-standing puzzle in M–N–C SACs, but also presents simple, solid criteria (i.e., CO2 adsorption modes) for indicating CO/formate selectivity, which help strategic development of high-performance CO2RR catalysts.

This report discloses a nontrivial role of the CO2 adsorption mode in governing the CO/formate selectivity of single-atom catalysts towards two-electron CO2 reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号