首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under different conditions, oligonucleotides can form several alternative DNA structures such as duplex, triplex and quadruplex. All these structures can interact with ethidium bromide (EB) and make its fluorescence intensity change. The fluorescence spectra and other related parameters provided by static fluorescence techniques showed that the interaction mechanisms between EB and these structures were not always the same. Among them, B type duplex and triplex DNA adopt an intercalative mode when binding to the EB, which has a relatively high efficiency of energy transfer and the fluorescence of EB cannot be quenched easily. While for the parallel duplex DNA, the interaction mode is an outside binding in which energy transfer can hardly happen and its fluorescence intensity as well as Stern-Volmer constant is almost the same to the free EB. For the quadruplex, the binding mechanism to EB is more complex. Results from the energy transfer and quenching studies indicate that the two interaction modes note  相似文献   

2.
Investigation of hole or excess electron hopping in DNA is mostly performed based on yield studies, in which an injector modified DNA duplex is irradiated to continuously inject either holes or electrons into the duplex. Observed is a chemical reaction of a "probe" molecule, which can be either one of the two purine bases or a different trap molecule positioned at various distances. The next step in the field will be the direct time resolution of the hole or electron transfer kinetics in DNA. Herein we describe the development of defined donor-DNA-acceptor systems, with properties that may allow time resolved electron and hole transfer studies in stably folded DNA structures.  相似文献   

3.
The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the F?rster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.  相似文献   

4.
From previous thermal and photoinduced charge-transfer reactions in duplex DNA there is accumulative evidence for an attenuation parameter beta of the distance dependence in the range 0.6-0.8 A(-1), with the exception of one specific system exhibiting beta = 1.5 A(-1) which is reinvestigated in this paper. Femtosecond to nanosecond time-resolved pump-probe spectroscopy has been used to follow photoinduced charge-shift dynamics in DNA duplexes containing a covalently appended, protonated 9-alkylamino-6-chloro-2-methoxyacridine chromophore. This acridine derivative (X+) resides in the DNA duplex at a specific abasic site, which is highly defined as reflected in the monoexponentiality of the kinetics. In the presence of only neighboring A:T base pairs, no charge transfer occurs within the excited-state lifetime (18 ns) of the chromophore. However, the presence of a guanine nucleobase as either a nearest neighbor or with one interspersed A:T base pair does result in fluorescence quenching. In the case of nearest neighbors, the intermediate radical state X* is formed within 4 ps and decays on the 30 ps time scale. Placing one A:T base pair between the X+ and guanine slows down the forward transfer rate by 3 orders of magnitude, corresponding to an apparent beta value of >2.0 A(-1). This dramatic decrease in the rate is due to a change in charge-transfer mechanism from a (nearly) activationless to a thermally activated regime in which the forward transfer is slower than the back transfer and the X* state is no longer observed. These observations indicate that the distance dependence of charge injection in the X+-labeled DNA duplex is not solely caused by a decrease in electronic couplings but also by a concomitant increase of the activation energy with increasing distance. This increase in activation energy may result from the loss of driving force due to excited-state relaxation competing with charge transfer, or reflect distance-dependent changes in the energetics, predominantly of the low-frequency reorganization energy in this charge-shift reaction, on purely electrostatic grounds. To test the hypothesis of distance-dependent activation energy, guanine has been replaced by 7-deazaguanine, its easier-to-oxidize purine analogue. In these duplexes, a similar change of charge-transfer mechanism is found. However, consistent with an a priori larger driving force this change occurs at a larger donor-acceptor separation than in the X+-guanine systems. Independent of the detailed contributions to the distance-dependent activation energy, this phenomenon illustrates the complex nature of experimental beta values.  相似文献   

5.
Jin Y  Shi W  Zhou M  Tu Y  Yan J 《Analytical sciences》2011,27(12):1185-1190
In the present work, two aptamer-based probes and related sensor systems were developed with chemiluminescence signaling. The detection was based on "turning-on" chemiluminescence with switching "off" of the resonance energy transfer after the aptamer's recognition of the target molecule. In this design, a DNA/aptamer duplex linked a chemiluminescence group and a gold nanoparticle together. Only low-intensity chemiluminescence was obtained due to the highly efficient resonance energy transfer. After introducting the target molecule, structure-switching took place with turning off the energy transfer; thus, a restoration and turning on of the chemiluminescence was obtained. The two designs differed in the chemiluminescence groups, since one was a covalently linked luminol molecule, while the other was a conjugated horseradish peroxidase for the catalysis of further chemiluminescence reactions. These schemes provided simple and effective sensing toward a model analyte, adenosine.  相似文献   

6.
G-quartet DNA converts to duplex form in the presence of its complementary strand. This conformational change can be detected in real time by a homogeneous assay method based on the signal amplification of conjugated polyelectrolytes and the specific interaction of intercalating dyes with double-stranded DNA (dsDNA). The probe solution contains a cationic, conjugated polymer (CCP), G-quadruplex labeled with a fluorescein at the 5'-terminus (G-quadruplex-Fl), and ethidium bromide (EB). The addition of a complementary target results in the transition from G-quadruplex to duplex (dsDNA-Fl) and EB intercalation within the duplex structure. Excitation of the CCP leads to energy transfer from CCP to dsDNA-Fl (FRET-1) and then energy transfer from dsDNA-Fl to EB (FRET-2). Increasing the number of mismatched bases discourages dsDNA formation, which is detected in the assay.  相似文献   

7.
A theory for charge transfer between the electrode and the donor/acceptor molecule coupled through a DNA bridge in solution is developed. We explore the crossover between the coherent tunneling and the incoherent sequential transfer regimes by varying the electrode potential and discuss the effects of single-base mismatches in DNA duplex in both regimes. In the former regime a single-base mismatch in DNA duplex causes a reduction in the charge transfer rate simply by decreasing the electron tunneling matrix element, however, in the latter regime the effects are rather complicated.  相似文献   

8.
M-DNA (a metal complex of DNA with millimolar concentrations of Zn2+, Co2+, or Ni2+ and basic pH) has been proposed to undergo electron transfer over long distances along the helix and has generated interest as a potential building block for nanoelectronics. We show that DNA aggregates form under solvent conditions favorable for M-DNA (millimolar zinc and pH = 8.6) by fluorescence correlation spectroscopy. We have performed steady-state F?rster resonance energy transfer (FRET) experiments with DNA oligomers conjugated with 6-carboxyfluorescein and tetramethylrhodamine to the opposite ends of double-stranded DNA (dsDNA) molecules. Enhanced acceptor emission is observed for distances larger than expected for identical DNA molecules with no zinc. To avoid intermolecular FRET, the fluorescently labeled dsDNA is diluted with a 100-fold excess of unlabeled dsDNA. The intramolecular FRET efficiency increases 25-fold for a 30-mer doubly labeled duplex DNA molecule upon addition of millimolar concentrations of zinc ions. Without zinc, this oligomer has less than 1% FRET efficiency. This dramatic increase in the FRET efficiency points to either significant changes in the F?rster radius or fraying of the ends of the DNA helices. The latter hypothesis is supported by our experiments with a 9-mer that show dissociation of the duplex by zinc ions.  相似文献   

9.
10.
The structural dynamics of a DNA hairpin (Hp) are studied in the absence and presence of the two natural osmolytes trimethylamine‐N‐oxide (TMAO) and urea at ambient and extreme environmental conditions, including high pressures and high temperatures, by using single‐molecule Förster resonance energy transfer and fluorescence correlation spectroscopy. The effect of pressure on the conformational dynamics of the DNA Hp is investigated on a single‐molecule level, providing novel mechanistic insights into its conformational conversions. Different from canonical DNA duplex structures of similar melting points, the DNA Hp is found to be rather pressure sensitive. The combined temperature and pressure dependent data allow dissection of the folding free energy into its enthalpic, entropic, and volumetric contributions. The folded conformation is effectively stabilized by the compatible osmolyte TMAO not only at high temperatures, but also at high pressures and in the presence of the destabilizing co‐solute urea.  相似文献   

11.
We have calculated the nonlinear response function of a DNA duplex helix including the contributions from the exciton population and coherence transfers by developing an appropriate exciton theory as well as by utilizing a projector operator technique. As a representative example of DNA double helices, the B-form (dA)10-(dT)10 is considered in detail. The Green functions of the exciton population and coherence transfer processes were obtained by developing the DNA exciton Hamiltonian. This enables us to study the dynamic properties of the solvent relaxation and exciton transfers. The spectral density describing the DNA base-solvent interactions was obtained by adjusting the solvent reorganization energy to reproduce the absorption and steady-state fluorescence spectra. The time-dependent fluorescence shift of the model DNA system is found to be ultrafast and it is largely determined by the exciton population transfer processes. It is further shown that the nonlinear optical spectroscopic techniques such as photon echo peak shift and two-dimensional photon echo can provide important information on the exciton dynamics of the DNA double helix. We have found that the exciton-exciton coherence transfer plays critical roles in the peculiar energy transfer and ultrafast memory loss of the initially created excitonic state in the DNA duplex helix.  相似文献   

12.
Quenching of phosphorescent platinum(II) and palladium(II) coproporphyrin (MeCP) labelled oligonucleotides was investigated. Strong hybridization-specific quenching was observed in duplex DNA structures with a variety of quenchers and with two identical porphyrin labels when in close proximity. Classical resonance energy transfer mechanism was ruled out, since quenching did not correlate with spectral overlaps and lifetime changes were insignificant. Quenching of MeCP by the free quenchers in solution revealed that porphyrin-porphyrin quenching is predominantly static while other dyes quench dynamically. The results suggest that the quenching in DNA duplex proceeds via direct contact.  相似文献   

13.
The reorganization energy that accompanies interfacial or through-strand electron tunneling in DNA is remarkably similar to that of a protein, and the attenuation factor for electron transfer between intercalated reagents also remains protein-like. These factors ensure rapid, but short-range electron tunneling through the duplex (shown schematically).  相似文献   

14.
We have investigated the contribution of molecular environment to the exchange reactions in the DNA molecule taking into account different geometries of the reaction centers in oxidized and reduced states. We have observed the influence of the ionization potential of the donor and the acceptor on the free energy of the hole transfer reaction in the solvated DNA molecule: A decrease of the free energy occurs if IPA > or = IPD and an increase if IPA < or = IPD. The corresponding decrease of the potential barrier by 0.244 eV for hole migration from (G-C) to (A-T) and increase for migration from (G-C) to (G-C)n in solvent have been determined. The prevalence of oxidation of the redox states in the molecule center in comparison to the molecule sides due to the nonuniform charge distribution along the phosphate backbone was found to be stronger for the non-neutralized backbone than for the neutralized case. The influence of the single counterion on the electrostatic interactions within the solute DNA molecule has been found to be smoothly spread over a long distance approximately 7-8 base pairs. Therefore, each counterion contributes to the oxidation potential of the 7-8 nearest nucleosides and any irregularity due to phosphate neutralization would not significantly modify the potential profile for the hole migration through the DNA molecule.  相似文献   

15.
We report a new Förster resonance energy transfer (FRET) system for structural analyses of DNA duplexes using perylene and Cy3 as donor and acceptor, respectively, linked at the termini of a DNA duplex via D-threoninol. Experimentally obtained FRET efficiencies were in good agreement with theoretical values calculated based on canonical B-form DNA. Due to the relatively long Förster radius, this system can be used to analyze large DNA structures, and duplexes containing photo-reactive molecules can be analyzed since perylene can be excited with visible light. The system was used to analyze a DNA duplex containing stilbene, demonstrating that in the region of the stilbene cluster the duplex adopts a ladder-like structure rather than helical one. Upon photodimerization between stilbene residues, FRET efficiencies indicated the reaction does not disturb DNA duplex. This FRET system will be useful for analysis of photoreactions of nucleobases as well as a wide range of nucleic acid structures.  相似文献   

16.
In the present work, the joint use of the potential energy, the reaction electronic flux profiles and NBO analysis along the intrinsic reaction coordinate within the framework of the reaction force analysis allows us to gain insights into the mechanism of the proton transfer process in amino acids. The reaction was studied in alanine and phenylalanine in the presence of a continuum and with addition of one water molecule acting as a bridge, the results were compared to those of tryptophan. The bridging water molecule stabilizes the zwitterionic form and increases the reaction barriers by a factor of two. This result is interpreted in terms of the energy required to bring the amino acid and the water molecule closer to each other and to promote the proton transfer through the reordering of the electron density. Furthermore, the bridging water molecule induces a concerted asynchronous double proton transfer, where the transfer of the carboxyl hydrogen atom is followed by the second proton transfer to the ammonium group. In addition, a second not intervening water molecule was added, which changes the proton acceptor and donor properties of the reactive water molecule modulating the reaction mechanism. The aforementioned methods allow us to identify the order of the transferred protons and the asynchronicity, thereby, evolving as promising tools to not only characterize but also manipulate reaction mechanisms.  相似文献   

17.
Time-resolved fluorescence of 2-aminopurine-labeled DNA duplexes at 77 K reveals the relationship between base dynamics and the conformational heterogeneity that results in the well-known multiexponential fluorescence decay at room temperature. The conformation that exhibits rapid interbase charge transfer at room temperature is not populated in the frozen duplex at 77 K; this geometry is accessed by thermal motion of the bases, it is not a minimum energy structure of the duplex. Three photophysically distinct conformational states persist in the frozen duplex; these are minimum energy structures and do not interconvert at room temperature on the time scale of the 2-aminopurine excited-state lifetime.  相似文献   

18.
Excited‐state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double‐stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson–Crick hydrogen bonds. A comparison of single‐ and double‐stranded DNA showed that the reactive charge‐transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson–Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge‐transfer states.  相似文献   

19.
Donor/acceptor (D/A) interactions are studied in a series of doubly modified 19-mer DNA duplexes. An ethynyl-linked Ru(II) donor nucleoside is maintained at the 5' terminus of each duplex, while an ethynyl-linked Os(II) nucleoside, placed on the complementary strands, is systematically moved toward the other terminus in three base pair increments. The steady-state Ru(II)-based luminescence quenching decreases from 90% at the shortest separation of 16 A (3 base pairs) to approximately 11% at the largest separation of 61 A (18 base pairs). Time-resolved experiments show a similar trend for the Ru(II) excited-state lifetime, and the decrease in the averaged excited-state lifetime for each duplex is linearly correlated with the fraction quenched obtained by steady-state measurements. Analysis according to the F?rster dipole-dipole energy transfer mechanism shows a reasonable agreement. Deviation from idealized behavior is primarily attributed to uncertainty in the orientation factor, kappa(2). Analyzing D/A interactions in an analogous series of doubly modified oligonucleotides, where the ethynyl-linked Ru(II) center is replaced with a saturated two-carbon linked complex, yields an excellent correlation with the F?rster mechanism. As this simple change partially relaxes the rigid geometry of the donor chromophore, these results suggest that the deviation from idealized F?rster behavior observed for the duplexes containing the rigidly held Ru(II) center originates, at least partially, from ambiguities in the orientation factor. Surprisingly, analyzing both quenching data sets according to the Dexter mechanism also shows an excellent correlation. Although this can be interpreted as strong evidence for a Dexter triplet energy transfer mechanism, it does not imply that this electron exchange mechanism is operative in these D/A duplexes. Rather, it suggests that systems that transfer energy via the F?rster mechanism can under certain circumstances exhibit Dexter-like "behavior", thus illustrating the danger of imposing a single physical model to describe D/A interactions in such complex systems. While we conclude that the F?rster dipole-dipole energy transfer mechanism is the dominant pathway for D/A interactions in these modified oligonucleotides, a minor contribution from the Dexter electron exchange mechanism at short distances is likely. This complex behavior distinguishes DNA-bridged Ru(II)/Os(II) dyads from their corresponding low molecular-weight and covalently attached counterparts.  相似文献   

20.
Semiconductor quantum dots for bioanalysis   总被引:2,自引:0,他引:2  
Semiconductor nanoparticles, or quantum dots (QDs), have unique photophysical properties, such as size-controlled fluorescence, have high fluorescence quantum yields, and stability against photobleaching. These properties enable the use of QDs as optical labels for the multiplexed analysis of immunocomplexes or DNA hybridization processes. Semiconductor QDs are also used to probe biocatalytic transformations. The time-dependent replication or telomerization of nucleic acids, the oxidation of phenol derivatives by tyrosinase, or the hydrolytic cleavage of peptides by proteases are probed by using fluorescence resonance energy transfer or photoinduced electron transfer. The photoexcitation of QD-biomolecule hybrids associated with electrodes enables the photoelectrochemical transduction of biorecognition events or biocatalytic transformations. Examples are the generation of photocurrents by duplex DNA assemblies bridging CdS NPs to electrodes, and by the formation of photocurrents as a result of biocatalyzed transformations. Semiconductor nanoparticles are also used as labels for the electrochemical detection of DNA or proteins: Semiconductor NPs functionalized with nucleic acids or proteins bind to biorecognition complexes, and the subsequent dissolution of the NPs allows the voltammetric detection of the related ions, and the tracing of the recognition events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号