首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
For metal-mediated host compounds, the development of strategies to reduce symmetry and introduce multiple functionalities in a non-statistical way is a challenging task. We show that the introduction of steric stress around the coordination environment of square-planar PdII cations and bis-monodentate nitrogen donor ligands allows to control the size and shape of the assembled product, from [Pd2L4] cages over [Pd2L3] bowl-shaped structures to [Pd2L2] rings. Therefore, banana-shaped ligand backbones were equipped with pyridines, two different quinoline isomers and acridine, the latter three introducing steric congestion through hydrogen substituents on annelated benzene rings. Differing behavior of the four resulting hosts towards the binding of C60 and C70 fullerenes was studied and related to structural differences by NMR spectroscopy, mass spectrometry and single crystal X-ray diffraction. The three cages based on pyridine, 6-quinoline or 3-quinoline donors were found to either bind C60, C70 or no fullerene at all.  相似文献   

2.
Construction of supramolecular structures with internal functionalities is a promising approach to build enzyme-like cavities. The endo-functionalized [Pd12L24] and [Pd2L4] coordination cages represent the most successful systems in this regard. However, these systems mainly contain one type of endo-moiety. We herein provide a solution for the controlled endo-functionalization of [Pd2L4] cages. Site-selective introduction of the endo-functional group was achieved through the formation of heteroleptic [Pd2( LA )2( LB )( LC )] cages. Using two orthogonal steric control elements is the key for the selective formation of the hetero-assemblies. We demonstrated the construction of two hetero-cages with a single internal functional group as well as a hetero-cage with two distinct endohedral functionalities. The endo-functionalized hetero-cages bound sulfonate guests with fast-exchange dynamics. This strategy provides a new solution for the controlled endo-functionalization of supramolecular cavities.  相似文献   

3.
Three new Pd(II) complexes of Schiff base ligands, namely, [Pd4(L1)4] (1), [Pd2(L2)2Cl2] (2) and [Pd(L3)2Cl2] (3) [HL 1 ?=?N-(benzylidene)-2-aminophenol; L 2 ?=?N-(2,4-dichlorobenzylidene)-2,6-diethylbenzenamine, L 3 ?=?4-(2,4-dichlorobenzylide-neamino)phenol] have been synthesized using solvothermal methods and characterized by elemental analysis, spectroscopy and single crystal X-ray diffraction. The crystal structures of the free ligands were also determined. The ??-oxygen-bridged tetranuclear cyclometallated Pd(II) complex (1) contains four nearly planar units, in which PdII is four-coordinate. Complex 2 is a ??-chloro-bridged dinuclear cyclometallated Pd(II) complex, whereas complex 3 is mononuclear. The Heck reactions of bromobenzene with acrylic acid catalyzed by complexes 1?C3 have also been studied.  相似文献   

4.
Spherical assemblies of the type [PdnL2n]2n+ can be obtained from PdII salts and curved N-donor ligands, L. It is well established that the bent angle, α, of the ligand is a decisive factor in the self-assembly process, with larger angles leading to complexes with a higher nuclearity, n. Herein, we report heteroleptic coordination cages of the type [PdnLnL′n]2n+, for which a similar correlation between the ligand bent angle and the nuclearity is observed. Tetranuclear cages were obtained by combining [Pd(CH3CN)4](BF4)2 with 1,3-di(pyridin-3-yl)benzene and ligands featuring a bent angle of α=120°. The use of a dipyridyl ligand with α=149° led to the formation of a hexanuclear complex with a trigonal prismatic geometry; for linear ligands, octanuclear assemblies of the type [Pd8L8L′8]16+ were obtained. The predictable formation of heteroleptic PdII cages from 1,3-di(pyridin-3-yl)benzene and different dipyridyl ligands is evidence that there are entire classes of heteroleptic cage structures that are privileged from a thermodynamic point of view.  相似文献   

5.
Reaction of [Pt(DMSO)2Cl2] or [Pd(MeCN)2Cl2] with the electron-rich LH=N,N’-bis(4-dimethylaminophenyl)ethanimidamide yielded mononuclear [PtL2] ( 1 ) but dinuclear [Pd2L4] ( 2 ), a paddle-wheel complex. The neutral compounds were characterized through experiments (crystal structures, electrochemistry, UV-vis-NIR spectroscopy, magnetic resonance) and TD-DFT calculations as metal(II) species with noninnocent ligands L. The reversibly accessible cations [PtL2]+ and [Pd2L4]+ were also studied, the latter as [Pd2L4][B{3,5-(CF3)2C6H3}4] single crystals. Experimental and computational investigations were directed at the elucidation of the electronic structures, establishing the correct oxidation states within the alternatives [PtII(L)2] or [Pt.(L )2], [PtII(L0.5−)2]+ or [PtIII(L)2]+, [(PdII)2(μ-L)4] or [(Pd1.5)2(μ-L0.75−)4], and [(Pd2.5)2(μ-L)4]+ or [(PdII)2(μ-L0.75−)4]+. In each case, the first alternative was shown to be most appropriate. Remarkable results include the preference of platinum for mononuclear planar [PtL2] with an N-Pt-N bite angle of 62.8(2)° in contrast to [Pd2L4], and the dimetal (Pd24+→Pd25+) instead of ligand (L→L ) oxidation of the dinuclear palladium compound.  相似文献   

6.
The C3‐symmetric chiral propylated host‐type ligands (±)‐tris(isonicotinoyl)‐tris(propyl)‐cyclotricatechylene ( L1 ) and (±)‐tris(4‐pyridyl‐4‐benzoxy)‐tris(propyl)‐cyclotricatechylene ( L2 ) self‐assemble with PdII into [Pd6L8]12+ metallo‐cages that resemble a stella octangula. The self‐assembly of the [Pd6( L1 )8]12+ cage is solvent‐dependent; broad NMR resonances and a disordered crystal structure indicate no chiral self‐sorting of the ligand enantiomers in DMSO solution, but sharp NMR resonances occur in MeCN or MeNO2. The [Pd6( L1 )8]12+ cage is observed to be less favourable in the presence of additional ligand, than is its counterpart, where L=(±)‐tris(isonicotinoyl)cyclotriguaiacylene ( L1 a ). The stoichiometry of reactant mixtures and chemical triggers can be used to control formation of mixtures of homoleptic or heteroleptic [Pd6L8]12+ metallo‐cages where L= L1 and L1 a .  相似文献   

7.
Coordination compounds Pd2(H2L2)Cl4 (I), Cu2(H2L2)Cl4 (II), Pd2(H2L3)Cl4 (III), and Cu2(H2L3)Cl4 (IV), where H2L2 and H2L3 are chiral bis-α-aminooxime ligands consisting of (+)-3-carene or (+)-limonene fragments and 4,4′-methylenedianiline linker, were synthesized and examined by NMR, ESR, and IR spectroscopy. The structure of [Cu(i-PrOH)CL2(μ-H2L3)CuCL2·H2O] (V) was determined by X-ray analysis.  相似文献   

8.
The diamagnetic complexes [Pd2(H2L1)Cl4] (I), [Pd2(H2L2)Cl4] (II), and Pd2(H2L3)Cl4(III) with chiral ligands derived from the natural monoterpenoid (R)-(+)-limonene are obtained (H2 L1 is ethylenediamine dioxime, H2L2 is piperazine dioxime, and H2L3 is propylenediamine dioxime). According to X-ray diffraction data, the crystal structures of complexes I and II are composed of binuclear acentric molecules. The coordination polyhedra PdN2Cl2 are trapeziums (squares distorted in a tetrahedral manner) made up of two N atoms of the tetradentate bridging cyclic ligands H2L1 and H2L2 and two Cl atoms. The fragments PdCl2 are trans in the complexes. The 13C and 1H NMR spectra of complexes I and II in CDCl3 also suggest their binuclear structures.  相似文献   

9.
The synthesis and characterization of three new palladium(II) complexes of 4-amino-6-ethyl-1,2,4-triazine-3-thion-5-one (AETTO, H3L), [PdCl2(H3L)]·H2O (1), [Pd2Cl2(H2L)(PPh3)3]NO3·2CH3CN (2) and [Pd(HL)(PPh3)2] (3), are reported. All the synthesized compounds are air-stable and were characterized by elemental analyses, IR, NMR spectroscopy and mass spectrometry. In addition, the molecular structures of the complexes have been determined by X-ray single crystal diffraction. On the basis of the crystallographic data, the neutral ligand in 1 and the deprotonated ligands in 2 and 3 act as bidentate NS donors. The singly deprotonated ligand in 2 acts as a bridging agent between two metal centers in the binuclear PdII-complex.  相似文献   

10.
The preparation of functionalized, heteroleptic PdxL2x coordination cages is desirable for catalytic and optoelectronic applications. Current rational design of these cages uses the angle between metal-binding (∠B) sites of the di(pyridyl)arene linker to predict the topology of homoleptic cages obtained via non-covalent chemistry. However, this model neglects the contributions of steric bulk between the pyridyl residues—a prerequisite for endohedrally functionalized cages, and fails to rationalize heteroleptic cages. We describe a classical mechanics (CM) approach to predict the topological outcomes of PdxL2x coordination cage formation with arbitrary linker combinations, accounting for the electronic effects of coordination and steric effects of linker structure. Initial validation of our CM method with reported homoleptic Pd12LFu24 (LFu = 2,5-bis(pyridyl)furan) assembly suggested the formation of a minor topology Pd15LFu30, identified experimentally by mass spectrometry. Application to heteroleptic cage systems employing mixtures of LFu (∠B = 127°) and its thiophene congener LTh (∠B = 149° ∠Bexp = 152.4°) enabled prediction of Pd12L24 and Pd24L48 coordination cages formation, reliably emulating experimental data. Finally, the topological outcome for exohedrally (LEx) and endohedrally (LEn) functionalized heteroleptic PdxL2x coordination cages were predicted to assess the effect of steric bulk on both topological outcomes and coordination cage yields, with comparisons drawn to experimental data.

A molecular mechanics approach enables the accurate prediction of polyhedral topology for homoleptic and heteroleptic palladium MxL2x coordination cages, allowing for new insight and design when considering endo- and exo-hedral functionalization.  相似文献   

11.
Metal-driven self-assembly is one of the most effective approaches to lucidly design a large range of discrete 2D and 3D coordination architectures/complexes. Palladium(II)-based self-assembled coordination architectures are usually prepared by using suitable metal components, in either a partially protected form (PdL′) or typical form (Pd; charges are not shown), and designed ligand components. The self-assembled molecules prepared by using a metal component and only one type of bi- or polydentate ligand (L) can be classified in the homoleptic series of complexes. On the other hand, the less explored heteroleptic series of complexes are obtained by using a metal component and at least two different types of non-chelating bi- or polydentate ligands (such as La and Lb). Methods that allow the controlled generation of single, discrete heteroleptic complexes are less understood. A survey of palladium(II)-based self-assembled coordination cages that are heteroleptic has been made. This review article illustrates a systematic collection of such architectures and credible justification of their formation, along with reported functional aspects of the complexes. The collected heteroleptic assemblies are classified here into three sections: 1) [(PdL′)m(La)x(Lb)y]-type complexes, in which the denticity of La and Lb is equal; 2) [(PdL′)m(La)x(Lb)y]-type complexes, in which the denticity of La and Lb is different; and 3) [Pdm(La)x(Lb)y]-type complexes, in which the denticity of La and Lb is equal. Representative examples of some important homoleptic architectures are also provided, wherever possible, to set a background for a better understanding of the related heteroleptic versions. The purpose of this review is to pave the way for the construction of several unique heteroleptic coordination assemblies that might exhibit emergent supramolecular functions.  相似文献   

12.
A strategy to engineer the stacking of diketopyrrolopyrrole (DPP) dyes based on non-statistical metallosupramolecular self-assembly is introduced. For this, the DPP backbone is equipped with nitrogen-based donors that allow for different discrete assemblies to be formed upon the addition of Pd(II), distinguished by the number of π-stacked chromophores. A Pd3L6 three-ring, a heteroleptic Pd2L2L′2 ravel composed of two crossing DPPs (flanked by two carbazoles), and two unprecedented self-penetrated motifs (a Pd2L3 triple and a Pd2L4 quadruple stack), were obtained and systematically investigated. With increasing counts of stacked chromophores, UV/Vis absorptions red-shift and emission intensities decrease, except for compound Pd2L2L′2, which stands out with an exceptional photoluminescence quantum yield of 51 %. This is extraordinary for open-shell metal containing assemblies and explainable by an intra-assembly FRET process. The modular design and synthesis of soluble multi-chromophore building blocks offers the potential for the preparation of nanodevices and materials with applications in sensing, photo-redox catalysis and optics.  相似文献   

13.
14.
Control over the integrative self-sorting of metallo-supramolecular assemblies opens up possibilities for introducing increased complexity and function into a single self-assembled architecture. Herein, the relationship between the geometry of three ligand components and morphology of three self-sorted heteroleptic [Pd2 L 2 L ′2]4+ cages is examined. Pd-mediated assembly of two bis-monodentate pyridyl ligands with native bite angles of 75° and 120° affords a cis-[Pd2 L 2 L ′2]4+ cage while the same reaction with two ligands with bite angles of 75° and 60° gives an unprecedented, self-penetrating structural motif; a trans-[Pd2(anti- L )2 L ′2]4+ heteroleptic cage with a “doubly bridged figure eight” topology. Each heteroleptic assembly can be formed by cage-to-cage conversion of the homoleptic precursors and morphological control of [Pd2 L 2 L ′2] cages is achieved by selective ligand displacement transformations in a system of three ligands and at least six possible cage products.  相似文献   

15.
Complexes [Zn2(HL1)2(CH3COO)2] (1) and [Zn2(L2)2] (2) were synthesized with salicylaldehyde semicarbazone (H2L1) and salicylaldehyde-4-chlorobenzoyl hydrazone (H2LASSBio-1064, H2L2), respectively. The crystal structure of (1) was determined. Upon recrystallization of previously prepared [Zn2(HL2)2(Cl)2] (3) in 1:9 DMSO:acetone crystals of [Zn2(L2)2(H2O)2]·[Zn2(L2)2(DMSO)4] (3a) were obtained. The crystal structure of 3a was also determined. All crystal structures revealed the presence of phenoxo-bridged binuclear zinc(II) complexes.  相似文献   

16.
The synthesis of six mononuclear palladium complexes of general formula [Pd(ox)/(mal)L2] and [Pd(ox)/(mal)L] (ox = oxalate, mal = malonate, both L and L are vitamin-B6 molecules (I), L = pyridoxine, pyridoxal and L = pyridoxamine) has been achieved. The structures of these compounds were established by elemental analysis, i.r. and 13C-n.m.r. [Pd(oxalate)(pyridoxine)2] was analyzed by single crystal X-ray diffraction. It exhibits square planar coordination with bond lengths 2.015 (2) Å for Pd—N and 2.010 (2) Å for Pd—O. The interaction of [Pd(ox)2]2– and [Pd(mal)2]2– with L has been followed kinetically in order to look into the nature of products and the mechanism of formation under the conditions [PdII-chelate] [L] and [L].  相似文献   

17.
In quest of new, single‐site catalysts for cyclic ester polymerizations, a series of mononuclear yttrium(III) complexes of N,N′‐bis(trimethylsilyl)benzamidinate ([LTMS]) and hindered N,N′‐bis‐(2,6‐dialkylaryl)toluamidinates ([LEt], aryl = Et2C6H3, and [LiPr], aryl = iPr2C6H3) were synthesized and characterized by X‐ray diffraction: LY(μ‐Cl)2Li(TMEDA) ( 1 ), LY(OC6H2tBu2Me) ( 2 ), LY(OC6H3Me2)2Li(THF)4 ( 3 ), LY(μ‐OtBu)2Li(THF) ( 4 ), LiPrY[N(SiMe2H)2]2(THF) ( 5 ), LY(THF)(Cl)(μ‐Cl)Li(THF)3 ( 6 ), and LY[N(SiMe2H)2] ( 7 ). Coordination numbers ranging from five to seven were observed, and they appeared to be controlled by the steric bulk of the supporting amidinate and alkoxide, phenoxide, or amide coligands. Complexes 2 – 5 and 7 are active catalysts for the polymerization of D,L ‐lactide (e.g., with 2 and added benzyl alcohol, 1000 equiv of D,L ‐lactide were polymerized at room temperature in less than 1 h, with polydispersities less than 1.5). The neutral complexes 2 , 5 , and 7 were more effective than the anionic complexes 3 and 4 . In addition, the presence of the more hindered amidinate ligands [LEt] and [LiPr] on yttrium‐amides slowed the polymerizations ( 7 < 5 < Y[N(SiMe2H)2]3). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 284–293, 2001  相似文献   

18.
The reaction of Schiff base 1,7-bis-(pyridin-2-yl)-2,6-diaza-1,6-heptadiene (L) with either NiCl2·6H2O or [PdIICl2(CH3CN)2]/Na[BF4] in 1?:?1 stoichiometry yielded mononuclear ionic complexes, trans-[NiII(L)(H2O)2]Cl2·3H2O (1·3H2O) and [PdII(L)][BF4]2 (2), respectively; the reaction of L with [PdIICl2(CH3CN)2] in 1?:?2 ratio yielded dinuclear cis-[PdII 2(μ-L)Cl4] (3). Complexes 1–3 were characterized by vibrational spectroscopy and X-ray diffraction; diamagnetic 2 and 3 were also characterized by NMR in solution. The molecular structures of 1 and 2 displayed tetradentate coordination of L with formation of two five-membered and one six-membered chelate rings for both complexes. In 3, L showed bidentate coordination mode for each pyridylimine toward PdII. Complex 1 has distorted octahedral geometry around NiII and an extended hydrogen-bond network; distorted square planar geometry around PdII in 2 and 3 was observed.  相似文献   

19.
The reactions of PhCboSeNa (Cbo = o-C2B10H10), prepared by reductive cleavage of Se-Se bond in (PhCboSe)2 by NaBH4 in methanol, with Na2PdCl4, MCl2(PR3)2 and [M2Cl2(μ-Cl)2(PR3)2] afforded a variety of complexes, viz., [Pd(SeCboPh)Cl] (1), [M(SeCboPh)2(PR3)2], [M2Cl2(μ-SeCboPh)(μ-Cl)(PR3)2] (M = Pd, Pt) and [Pd2Cl(SeCb0Ph)(μ-Cl)(μ-SeCboPh)(PEt3)2] (7) have been isolated. These complexes were characterized by elemental analyses and NMR (1H, 31P, 77Se, 195Pt) spectroscopy. The structures of [Pd(SeCboPh)2(PEt3)2] (2), [Pt(SeCboPh)2(PMe2Ph)2] (3), [Pd2Cl2(μ-SeCboPh)(μ-Cl)(PMe2Ph)2] (5) and [Pd2Cl(SeCboPh)(μ-Cl)(μ-SeCboPh)(PEt3)2] (7) were established by X-ray crystallography. The latter represents the first example of asymmetric coordination of selenolate ligands in binuclear bis chalcogenolate complexes of palladium and platinum. Thermolysis of [Pd(SeCboPh)2(PEt3)2] (2) in HDA (hexadecylamine) at 330 °C gave nano-crystals of Pd17Se15.  相似文献   

20.
Polynuclear Pd(II) and Ni(II) complexes of macrocyclic polyamine 3,6,9,16,19,22‐hexaazatricyclo[22.2.2.211,14]‐triaconta 11,13,24,26(l),27,29‐hexaene (L) in solution were investigated by electrospray ionization mass spectrometry (ESIMS). For methanol solution of complexes M2LX4 (M = Pd(II) and Ni(II), X= Cl and I), two main clusters of peaks were observed which can be assigned to [M2LX3]+ and [M2LX2]2+. When Pd2LCl4 was treated with 2 or 4 mol of AgNO3, it gave rise formation of Pd2LCl2 (NO3)2 · H2O and [Pd2L(H2O)m(NO3)n](4‐n)+, respectively. ESMS spectra show that the dissociation of the former in the ionization process gave peaks of [Pd2LCl2]2+ and [(Pd2LCl2)NO3]+, while dissociation of the later gave the peaks of [Pd2L(CH3CO2)2]2+ and [Pd2L(CH3CO2)2](NO3) + in the presence of acetic acid. Similar species were observed for Pd2LI4 when treated with 4 mol of AgNO3. When [Pd2L · (H2O)m(NO3)n](4‐n)+ reacted with 2 mol of oxalate anions at 40°C, [Pd4L2(C2O4)2(NO3)2]2+ and [Pd4L2(C2O4)2 (NO3)]3+ were detected. This implies the formation of square‐planar molecular box Pd4L2(C2O4)2(NO3)4 in which C2O4? may act as bridging ligands as confirmed by crystal structure analysis. The dissociation form and the stability of complex cations in gaseous state are also discussed. This work provides an excellent example of the usefulness of ESIMS in the identification of metal complexes in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号