首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An uncommon coordination protocol induced by the p-tolylsulfonyl dithiocarbimate ligand (L) [L = p-CH(3)C(6)H(4)SO(2)N[double bond, length as m-dash]CS(2)(2-)] in conjunction with PPh(3) allowed the formation of novel homodimetallic, Cu(2)(PPh(3))(4)L (1), trinuclear heterometallic Cu(2)Ni(L)(2)(PPh(3))(4) (2) and heteroleptic complexes of general formula cis-[M(PPh(3))(2)L] [M = Pd(ii) (3), Pt(ii) (4)]. The complexes have been characterized by microanalysis, mass spectrometry, IR, (1)H, (13)C and (31)P NMR and electronic absorption spectra and single-crystal X-ray crystallography. 2 uniquely consists of square planar, trigonal planar and tetrahedral coordination spheres within the same molecule. In both heteroleptic complexes 3 and 4 the orientation of aromatic protons of PPh(3) ligand towards the Pd(ii) and Pt(ii) center reveals C-HPd and C-HPt rare intramolecular anagostic or preagostic interactions. These complexes exhibit photoluminescent properties in solution at room temperature arising mainly from intraligand charge transfer (ILCT) transitions. The assignment of electronic absorption bands has been corroborated by time dependent density functional theory (TD-DFT) calculations. Complexes 1 and 2 with σ(rt) values ~ 10(-6) S cm(-1) show semi-conductor properties in the temperature range 313-403 K whereas 3 and 4 exhibit insulating behaviour.  相似文献   

2.
3.
We have synthesized in a single-step procedure from available copper(I) precursor at RT two Cu(I) thiolato clusters of the formula [Cu4(μ-SCH(CH3)2)6]2− and [Cu5(μ-SC(CH3)3)6] as revealed by X-ray crystallography, where increased steric bulk leads to a bigger cage with some two-coordinate metal centers. In addition, we identified a mononuclear two coordinate thiolato complex with the bulkier ligand, of the formula NEt4[Cu(SC(CH3)3)2]. This is only the second example of such a complex of an aliphatic ligand that is structurally characterized. The X-ray structure reveals an S–Cu–S angle of 176.7–179.5°, with Cu–S distances of 2.14 Å.  相似文献   

4.
5.
The bis-bidentate bridging ligand L {α,α'-bis[3-(2-pyridyl)pyrazol-1-yl]-1,4-dimethylbenzene}, which contains two chelating pyrazolyl-pyridine units connected to a 1,4-phenylene spacer via flexible methylene units, reacts with transition metal dications to form a range of polyhedral coordination cages based on a 2M:3 L ratio in which a metal ion occupies each vertex of a polyhedron, a bridging ligand lies along every edge, and all metal ions are octahedrally coordinated. Whereas the Ni(II) complex [Ni(8)L(12)](BF(4))(12)(SiF(6))(2) is an octanuclear cubic cage of a type we have seen before, the Cu(II), Zn(II), and Cd(II) complexes form new structural types. [Cu(6)L(9)](BF(4))(12) is an unusual example of a trigonal prismatic cage, and both Zn(II) and Cd(II) form unprecedented hexadecanuclear cages [M(16)L(24)]X(32)(X = ClO(4) or BF(4)) whose core is a skewed tetracapped truncated tetrahedron. Both Cu(6)L(9) and M(16)L(24) cages are based on a cyclic helical M(3)L(3) subunit that can be considered as a triangular "panel", with the cages being constructed by interconnection of these (homochiral) panels with additional bridging ligands in different ways. Whereas [Cu(6)L(9)](BF(4))(12) is stable in solution (by electrospray mass spectrometry, ES-MS) and is rapidly formed by combination of Cu(BF(4))(2) and L in the correct proportions in solution, the hexadecanuclear cage [Cd(16)L(24)](BF(4))(32) formed on crystallization slowly rearranges in solution over a period of several weeks to the trigonal prism [Cd(6)L(9)](BF(4))(12), which was unequivocally identified on the basis of its (1)H NMR spectrum. Similarly, combination of Cd(BF(4))(2) and L in a 2:3 ratio generates a mixture whose main component is the trigonal prism [Cd(6)L(9)](BF(4))(12). Thus the hexanuclear trigonal prism is the thermodynamic product arising from combination of Cd(II) and L in a 2:3 ratio in solution, and arises from both assembly of metal and ligand (minutes) and rearrangement of the Cd(16) cage (weeks); the large cage [Cd(16)L(24)](BF(4))(32) is present as a minor component of a mixture of species in solution but crystallizes preferentially.  相似文献   

6.
We report the anion-templated syntheses of a variety of supramolecular assemblies of Co(II). Remarkably in the presence of a weakly coordinating ion such as BF(4) (-), a discrete three-dimensional cage [BF(4) subset(BF(4))(2)Co(2)(L(1))(4)][BF(4)] (2) is formed with three coordinated BF(4) (-) ions, a rare example in supramolecular chemistry (L(1)=di(benzimidazole)-1,4-phenylene). Switching to stronger coordinating ions, such as NO(3) (-) or Cl(-), a one-dimensional coordination polymer [[Co(L(1))(NO(3))(2)](n)] (3) and a metallomacrocycle [Co(2)(L(1))(2)(Cl)(4)] (5) were formed, respectively. These results illustrate the powerful effect of the anion-templating chemistry. Finally the magnetic properties of these assemblies 1 b, 2, 3, and 5 are presented and discussed.  相似文献   

7.
A new series of hydrocarbon cages containing hexa- and octacoordinate carbon centers were designed theoretically by performing DFT calculations at the B3 LYP/6-311+G** level. Among these non-classical structures that were found to still obey the 8e rule, the two tetracations with octacoordinate carbons may be the first examples found in pure hydrocarbons. Structural characteristics, as well as thermodynamic and kinetic stabilities, were also investigated theoretically for these two octacoordinate tetracations. These hydrocarbon compounds containing hypercoordinate carbon centers provide a challenge for synthetic organic chemists.  相似文献   

8.
The second-generation Janus scorpionate ligand [HB(mtda (Me)) 3] (-) (mtda (Me) = 2-mercapto-5-methyl-1,3,4-thiadiazolyl) with conjoined ( N, N, N-) and ( S, S, S-) donor faces has been prepared. This second-generation Janus scorpionate ligand [HB(mtda (Me)) 3] (-) differs from the first-generation [HB(mtda) 3] (-) ligand by the replacement of hydrogens on the heterocyclic rings proximal to the nitrogenous face with methyl groups. This study probed whether steric interactions introduced by such methyl group substitution could modulate the reactivity and coordination preferences of these ambidentate ligands. The crystal structures of a sodium complex Na[HB(mtda (Me)) 3].3(MeOH), the potassium complexes K[HB(mtda) 3].MeOH, and K 2[HB(mtda (Me)) 3] 2.3MeOH, and several iron complexes were obtained. The difference between first- and second-generation Janus scorpionate ligands is most obvious from the discrepancy between the properties and structures of the two iron(II) compounds with the formula Fe[HB(mtda (R)) 3] 2.4DMF (R = H or Me). The complex with the first-generation ligand (R = H) is pink and diamagnetic. An X-ray structural study revealed two facially coordinated kappa (3)N-scorpionates with no bound solvent molecules. The average Fe-N bond distance of 1.97 A is indicative of the low-spin t 2g (6)e g* (0) electron configuration. In contrast, the iron(II) complex of the second-generation ligand (R = Me) is yellow and paramagnetic. This structure shows two trans-kappa (1)S-scorpionates and four equatorial-bound DMF where the average Fe-O and Fe-S distances of 2.12 and 2.51 A, respectively, are indicative of the high-spin t 2g (4)e g* (2) electron configuration. The discrepancy in binding modes and spin-states of iron(II) is carried over to the solvent-free Fe[HB(mtda (R)) 3] 2 (R = H, Me) complexes, as determined from Mossbauer spectral studies. The Mossbauer spectral parameters for Fe[HB(mtda) 3] 2 are fully consistent with low-spin iron(II) in a FeN 6 environment, whereas those for Fe[HB(mtda (Me)) 3] 2 are most consistent with high-spin iron(II) in a FeS 6 environment. Interestingly, when either complex is dissolved in highly polar solvents (DMF, DMSO, or H 2O), the ligand completely dissociates forming [Fe(solvent) 6][HB(mtda (R)) 3] 2 (R = H, Me).  相似文献   

9.
Control over pore size, shape, and connectivity in synthetic porous materials is important in applications such as separation, storage, and catalysis. Crystalline organic cage molecules can exhibit permanent porosity, but there are few synthetic methods to control the crystal packing and hence the pore connectivity. Typically, porosity is either 'intrinsic' (within the molecules) or 'extrinsic' (between the molecules)--but not both. We report a supramolecular approach to the assembly of porous organic cages which involves bulky directing groups that frustrate the crystal packing. This generates, in a synthetically designed fashion, additional 'extrinsic' porosity between the intrinsically porous cage units. One of the molecular crystals exhibits an apparent Brunauer-Emmett-Teller surface area of 854 m(2) g(-1), which is higher than that of unfunctionalized cages of the same dimensions. Moreover, connectivity between pores, and hence guest uptakes, can be modulated by the introduction of halogen bonding motifs in the cage modules. This suggests a broader approach to the supramolecular engineering of porosity in molecular organic crystals.  相似文献   

10.
The coordination number of the metal in iron(II) beta-diketiminate complexes can be tuned through the size of the alkyl substituents on the ligand backbone.  相似文献   

11.
A cavitand functionalized with four alkylthioether groups at the lower rim, and four tolylpyridine groups on the upper rim is able to bind to a gold surface by its thioether groups, and forms a coordination cage with [Pd(dppp)(CF(3)SO(3))(2)] by its pyridine groups. The cavitand or the cage complex can be inserted from solution into a self-assembled monolayer (SAM) of 11-mercaptoundecanol on gold. The inserted molecules can be individually detected as they protrude from the SAM by atomic force microscopy (AFM). The cages can be reversibly assembled and disassembled on the gold surface. AFM can distinguish between single cavitand and cage molecules of 2.5 nm and 5.8 nm height, respectively.  相似文献   

12.
Reaction of a tris-bidentate ligand L(1) (which can cap one triangular face of a metal polyhedron), a bis-bidentate ligand L(2) (which can span one edge of a metal polyhedron), and a range of M(2+) ions (M = Co, Cu, Cd), which all have a preference for six coordination geometry, results in assembly of the mixed-ligand polyhedral cages [M12(mu(3)-L(1))4(mu-L(2))12](24+). When the components are combined in the correct proportions [M(2+):L(1):L(2) = 3:1:3] in MeNO2, this is the sole product. The array of 12 M(2+) cations has a cuboctahedral geometry, containing six square and eight triangular faces around a substantial central cavity; four of the eight M3 triangular faces (every alternate one) are capped by a ligand L(1), with the remaining four M3 faces having a bridging ligand L(2) along each edge in a cyclic helical array. Thus, four homochiral triangular {M3(L(2))3}(6+) helical units are connected by four additional L(1) ligands to give the mixed-ligand cuboctahedral array, a topology which could not be formed in any homoleptic complex of this type but requires the cooperation of two different types of ligand. The complex [Cd3(L(2))3(ClO4)4(MeCN)2(H2O)2](ClO4)2, a trinuclear triple helicate in which two sites at each Cd(II) are occupied by monodentate ligands (solvent or counterions), was also characterized and constitutes an incomplete fragment of the dodecanuclear cage comprising one triangular {M3(L(2))3}(6+) face which has not yet reacted with the ligands L(1). (1)H NMR and electrospray mass spectrometric studies show that the dodecanuclear cages remain intact in solution; the NMR studies show that the Cd 12 cage has four-fold (D2) symmetry, such that there are three independent Cd(II) environments, as confirmed by a (113)Cd NMR spectrum. These mixed-ligand cuboctahedral complexes reveal the potential of using combinations of face-capping and edge-bridging ligands to extend the range of accessible topologies of polyhedral coordination cages.  相似文献   

13.
The sequential treatment of Lewis acids with N,N'-bidentate ligands and thereafter with ButLi has afforded a series of hydride-encapsulating alkali metal polyhedra. While the use of Me3Al in conjunction with Ph(2-C5H4N)NH gives Ph(2-C5H4N)NAlMe2 and this reacts with MeLi in thf to yield the simple 'ate complex Ph(2-C5H4N)NAlMe3Li.thf, the employment of an organolithium substrate capable of beta-hydride elimination redirects the reaction significantly. Whereas the use of ButLi has previously yielded a main group interstitial hydride in which H- exhibits micro6-coordination, it is shown here that variability in the coordination sphere of the encapsulated hydride may be induced by manipulation of the organic ligand. Reaction of (c-C6H11)(2-C5H4N)NH with Me3Al/ButLi yields [{(c-C6H11)(2-C5H4N)N}6HLi8]+[(But2AlMe2)2Li]-, which is best viewed as incorporating only linear di-coordination of the hydride ion. The guanidine 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine (hppH) in conjunction with Me2Zn/ButLi yields the micro8-hydride [(hpp)6HLi8]+[But3Zn]-.0.5PhMe. Formation of the micro8-hydride [(hpp)6HLi8]+[ButBEt3]- is revealed by employment of the system Et3B/ButLi. A new and potentially versatile route to interstitial hydrides of this class is revealed by synthesis of the mixed borohydride-lithium hydride species [(hpp)6HLi8]+[Et3BH]- and [(hpp)6HLi8]+[(Et3B)2H]- through the direct combination of hppLi with Et3BHLi.  相似文献   

14.
The valence and coordination state of paramagnetic cobalt atoms in bulk phases of perovskite cobaltate LaCoO3 and cobalt oxide Co3O4 and in nanosized LaCoO3 deposited inside the mesoporous molecular sieve MCM-41 matrix has been studied using ESR. Cobalt(II) cations in deposited cobaltates have octahedral coordination, which is characteristic of perovskite-like structures.  相似文献   

15.
In our ongoing development of ferrocene ligands, 1‐dimethylamino‐2‐(diphenylphosphinothioyl)ferrocene is being used as a convenient building block to obtain racemic or enantiomerically pure ligands. Using this building block in large excess allowed the formation of several by‐products, two of which have already been reported; the structure of a third by‐product, namely 1‐(diphenylphosphinothioyl)‐2‐{[(diphenylphosphinothioyl)sulfanyl]methyl}ferrocene, [Fe(C5H5)(C30H25P2S3)], is presented here. The crystal structure is built up from a ferrocene unit, with one of the cyclopentadienyl (Cp) rings substituted in the 1‐ and 2‐positions by a protected diphenylphosphinothioyl group and a [(diphenylphosphinothioyl)sulfanyl]methyl fragment, –CH2SP(=S)Ph2. There are C—H...S interactions which result in the formation of chains parallel to the c axis. After desulfurization, the crude material was then reacted with Pd and Pt (M) precursors [MCl2(CH3CN)2] to yield two isostructural dinuclear complexes arranged around twofold axes, namely (R,R/S,S)‐bis{μ‐[2‐(diphenylphosphanyl)ferrocen‐1‐yl]methanethiolato‐κ3P,S:S}bis[chloridopalladium(II)] pentane disolvate, [Pd2{Fe(C5H5)(C18H15PS)}2Cl2]·2C5H12, and the platinum(II) analogue, (R,R/S,S)‐bis{μ‐[2‐(diphenylphosphanyl)ferrocen‐1‐yl]methanethiolato‐κ3P,S:S}bis[chloridoplatinum(II)] toluene monosolvate, [Pt2{Fe(C5H5)(C18H15PS)}2Cl2]·C7H8, in which the two metal atoms present a slightly distorted square‐planar geometry formed by two bridging S atoms and P and Cl atoms. The P,S‐chelating ligand results from the rupture of one of the P—S bonds in the starting ligand. These dinuclear complexes display a butterfly geometry. Surprisingly, only the (R,R/S,S) diastereoisomer has been isolated.  相似文献   

16.
17.
18.
《Polyhedron》1999,18(21):2729-2736
A family of three mixed-ligand osmium complexes of type [Os(PPh3)2(N-N)Br2], where N-N=2,2′-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (Me2bpy) and 1,10-phenanthroline (phen), have been synthesized and characterized. The complexes are diamagnetic (low-spin d6, S=0) and in dichloromethane solution they show intense MLCT transitions in the visible region. The two bromide ligands have been replaced from the coordination sphere of [Os(PPh3)2(phen)Br2] under mild conditions by a series of anionic ligands L (where L=quinolin-8-olate (q), picolinate (pic), oxalate (Hox) and 1-nitroso-2-naphtholate (nn)) to afford complexes of type [Os(PPh3)2(phen)(L)]+, which have been isolated and characterized as the perchlorate salt. The structure of the [Os(PPh3)2(phen)(pic)]ClO4 complex has been determined by X-ray crystallography. The PPh3 ligands occupy trans positions and the picolinate anion is coordinated to osmium as a bidentate N,O-donor forming a five-membered chelate ring. The [Os(PPh3)2(phen)(L)]+ complexes are diamagnetic and show multiple MLCT transitions in the visible region. The [Os(PPh3)2(N-N)Br2] complexes show an osmium(II)–osmium(III) oxidation (−0.02 to 0.12 V vs. SCE) followed by an osmium(III)–osmium(IV) oxidation (1.31 to 1.43 V vs. SCE). The [Os(PPh3)2(phen)(L)]+ complexes display the osmium (II)–osmium (III) oxidation (0.26 to 0.84 V vs. SCE) and one reduction of phen (−1.50 to −1.79 V vs. SCE). The osmium (III)–osmium (IV) oxidation has been observed only for the L=q and L=Hox complexes at 1.38 V vs. SCE and 1.42 V vs. SCE respectively. The osmium(III) species, viz. [OsIII(PPh3)2(N-N)Br2]+ and [OsIII(PPh3)2(phen)(L)]2+, have been generated both chemically and electrochemically and characterized in solution by electronic spectroscopy and cyclic voltammetry.  相似文献   

19.
20.
Product selectivities from solvolysis of 1-adamantyl bromide in several binary protic solvents are revealing about the relative importance of solvent acidity and bulk  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号