首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed.  相似文献   

2.
Exergy analysis is a method that uses the conservation of mass and conservation of energy principles together with the second law of thermodynamics for the analysis, design, and improvement of energy and other systems. The exergy method is a useful tool for furthering the goal of more efficient energy-resource use, for it enables the locations, types, and magnitudes of wastes and losses to be identified and meaningful efficiencies to be determined. The exergy analysis of two-shaft gas turbine arrangements is presented and discussed in this paper. Two configurations (in parallel and series free turbine) are presented here and analyzed separately to identify and quantify the energy and exergy losses. Comparison between the two configurations is presented in terms of work output, efficiency, SFC, exergy destruction, and second-law efficiency for the design conditions. The percentage ratio of the exergy destruction in the individual components to total exergy destruction was found maximum in the combustion chambers (above 90%). The second-law efficiency of series configuration is found to be higher than parallel.  相似文献   

3.
IGCC中空分系统特性及其对整体性能影响   总被引:3,自引:0,他引:3  
本文利用Aspen-plus软件对典型的空分装置进行了模拟分析(含(?)分析),得出空分系统性能特性(包括内部状态参数和能耗分布),在此基础上探讨不同空分流程的IGCC系统性能随整体化系数Xas等变化的规律,并通过大量数值计算分析比较了高压整体化空分系统与低压独立空分系统的情况。本文研究成果对IGCC系统方案设计有较大的参考价值。  相似文献   

4.
应用有限时间热力学理论和方法建立了恒温热源不可逆两级中冷回热再热布雷顿热电联产装置模型,基于分析的观点,导出了装置无量纲输出率和效率的解析式。在给定总压比的情形下,通过数值计算分别研究了输出率和效率与两个中冷压比和两个再热压比的关系,当总压比变化时,发现输出率和效率对总压比存在最大值,并分别求出了两个相应的最佳的中冷压比和再热压比。分析了回热度、中冷度、再热度、压气机和涡轮机效率、压降损失等特征参数对装置性能的影响。最后发现分别存在最佳的用户侧温度使输出率和效率取得双重最大值。  相似文献   

5.
文中建立了带有散热翅片的复合抛物面聚光太阳能PV/T空气集热器内部传热过程的一维稳态数学模型,对传热过程进行了数值模拟,对集热器热、电、(火用)和净电效率进行了计算.分析了空气质量流量、入射光强度、风速对集热器的空气温度及系统各效率的影响.结果表明:随着入射光强度的增加,空气进出口温差、热和(火用)效率是增大的,而电效率则有所降低.随着空气流量的增加,系统的净电效率和进出口温度差是降低的.通过计算可知集热器的(火用)效率在18%~11%,热效率可达65%,净电效率低于2%,并明显受空气质量流速的影响.  相似文献   

6.
在联产系统能量和物质转换过程模拟和分析的基础上,重点研究了热功转换过程及其与甲醇合成过程的相互影响.得到部分联产率对系统输出功、甲醇合成压缩机耗功、甲醇产量、合成塔副产蒸汽的影响.并对比了动力独立生产系统和部分联产系统供电效率.  相似文献   

7.
A new type of advanced cycle with saturated air called a gas turbine cycle with saturation for air (GTSA) is analyzed by graphical exergy methodology based on energy-utilization diagrams (EUDs). By comparing it with an advanced steam-injected gas turbine cycle (STIG), key features of the GTSA system are clarified. The model system may achieve an efficiency as high as 56%. It is about 8% more efficient than the STIG. In addition, some suggestions are pointed out for further research.  相似文献   

8.
A power-water cogeneration system based on a supercritical carbon dioxide Brayton cycle (SCBC) and reverse osmosis (RO) unit is proposed and analyzed in this paper to recover the waste heat of a gas turbine. In order to improve the system performance, the power generated by SCBC is used to drive the RO unit and the waste heat of SCBC is used to preheat the feed seawater of the RO unit. In particular, a dual-stage cooler is employed to elevate the preheating temperature as much as possible. The proposed system is simulated and discussed based on the detailed thermodynamic models. According to the results of parametric analysis, the exergy efficiency of SCBC first increases and then decreases as the turbine inlet temperature and split ratio increase. The performance of the RO unit is improved as the preheating temperature rises. Finally, an optimal exergy efficiency of 52.88% can be achieved according to the single-objective optimization results.  相似文献   

9.
Organic Rankine Cycle (ORC) is an effective way to recycle waste heat sources of a marine diesel engine. The aim of the present paper is to analyze and optimize the thermoeconomic performance of a Series Heat Exchangers ORC (SHEORC) for recovering energy from jacket water, scavenge air, and exhaust gas. The three sources are combined into three groups of jacket water (JW)→exhaust gas (EG), scavenge air (SA)→exhaust gas, and jacket water→scavenge air→exhaust gas. The influence of fluid mass flow rate, evaporation pressure, and heat source recovery proportion on the thermal performance and economic performance of SHEORC was studied. A single-objective optimization with power output as the objective and multi-objective optimization with exergy efficiency and levelized cost of energy (LCOE) as the objectives are carried out. The analysis results show that in jacket water→exhaust gas and jacket water→scavenge air→exhaust gas source combination, there is an optimal heat recovery proportion through which the SHEORC could obtain the best performance. The optimization results showed that R245ca has the best performance in thermoeconomic performance in all three source combinations. With scavenge air→exhaust, the power output, exergy efficiency, and LCOE are 354.19 kW, 59.02%, and 0.1150 $/kWh, respectively. Integrating the jacket water into the SA→EG group would not increase the power output, but would decrease the LCOE.  相似文献   

10.
冷热电联产系统的评价准则   总被引:14,自引:3,他引:11  
本文通过对以燃气轮机回热循环为动力系统的冷热电联产系统进行热力学分析,对几种常用的评价准则进行了比较。通过分析,认为能量利用系数将冷、热、电等各股能量等价看待,(火用)效率过分看重能量的作功能力,折合发电效率过分关注冷、热能的输出,均不适于冷热电联产系统的评价;节能率反映的是输入能量的使用情况,经济(火用)效率在某种程度上是经济性的表现,比较适于冷热电联产系统的评价。研究中发现,燃气轮机温比有利于系统性能的提高,但针对不同的目标有不同的最佳压比;在节能率的使用中需要明确参照系统的性能。  相似文献   

11.
本文针对传统焦炭生产工艺的不足、并应用联产系统整合思路,研究提出新型焦炭动力联产系统.新系统取消了传统炼焦工艺中直接燃用焦炉煤气为炭化室提供炼焦热量的方式,采用外置煤炭燃烧室提供热量,从而实现用低品质煤炭替代高品质焦炉煤气;节省下来的富氢、高热值的焦炉煤气作为燃料提供给联合循环,实现高效洁净发电;改进炼焦过程烟气废热回收方式,使得排烟损失大大降低.分析结果表明,新系统具有优良的热力性能,相对节能率高达15%左右.对系统关键过程的图像(火用)分析分析表明,燃烧过程和换热过程等变革与改进是系统性能提升的关键所在.本文研究将为冶金生产的可持续发展提供新思路与新系统方案.  相似文献   

12.
整体煤气化联合循环(IGCC)损分布结构研究   总被引:2,自引:0,他引:2  
整体煤气化联合循环是一种先进的洁净煤发电技术。本文应用#[1316]分析方法,研究IGCC中七个子系统(空分、气化、净化、压气机、燃烧室、透平、余热锅炉及汽机)的#[1316]损失分布,指出系统中最大#[1316]损失过程为煤气化、燃气轮机燃烧和空分过程。同时,揭示了系统随不同空气整体化和氮气回注的规律。这些研究可以指导下一代IGCC系统的改进  相似文献   

13.
对低温空气制冷系统中的散热器、回热器性能进行实验研究,测量不同工况条件下两个锯齿形板翅式换热器的换热效率及系统性能,分析了换热器低压侧和高压侧的空气流量对换热器及系统性能的影响。结果表明:(1)散热器低压侧空气流量是影响其效率的主要因素;(2)回热器效率随其低压侧空气流量的增大而增大,随其高压空气流量的增大而减小;(3)高压空气流量是影响制冷量的主要因素;在其它工况参数不变的条件下,高压空气流量增大7.9%,制冷量最大增加14.5%。  相似文献   

14.
轮背空腔-密封气对CAES向心涡轮变工况流动损失的影响   总被引:1,自引:0,他引:1  
本文以国内首套MW级压缩空气储能(CAES)系统末级向心涡轮为研究对象,通过数值模拟分析了变工况条件下轮背空腔-密封气对等熵效率和流场结构的影响.结果表明:在求解中考虑轮背空腔-密封气结构能够使等熵效率数值解的偏差减小0.7%;随涡轮进口压力增加,轮背空腔泄漏流由叶片吸力面中部叶高区域逐渐向轮毂转移,流动损失先增加后减小;合理降低轮背空腔泄漏气体的轴向速度,能够减弱轮背空腔-密封气结构对等熵效率的负面影响,使向心涡轮在较宽的变工况范围内都保持高效运行.  相似文献   

15.
A multi-objective optimization based on the non-dominated sorting genetic algorithm (NSGA-II) is carried out in the present work for the basic organic Rankine cycle (BORC) and regenerative ORC (RORC) systems. The selection of working fluids is integrated into multi-objective optimization by parameterizing the pure working fluids into a two-dimensional array. Two sets of decision indicators, exergy efficiency vs. thermal efficiency and exergy efficiency vs. levelized energy cost (LEC), are adopted and examined. Five decision variables including the turbine inlet temperature, vapor superheat degree, the evaporator and condenser pinch temperature differences, and the mass fraction of the mixture are optimized. It is found that the turbine inlet temperature is the most effective factor for both the BORC and RORC systems. Compared to the reverse variation of exergy efficiency and thermal efficiency, only a weak conflict exists between the exergy efficiency and LEC which tends to make the binary objective optimization be a single objective optimization. The RORC provides higher thermal efficiency than BORC at the same exergy efficiency while the LEC of RORC also becomes higher because the bare module cost of buying one more heat exchange is higher than the cost reduction due to the reduced heat transfer area. Under the heat source temperature of 423.15 K, the final obtained exergy and thermal efficiencies are 45.6% and 16.6% for BORC, and 38.6% and 20.7% for RORC, respectively.  相似文献   

16.
为了将旋转部件与静止部件之间不同压力的空间隔开,微燃机中采用了气封装置以减少泄流量。泄漏流量的大小,以及其对主流的干扰,微燃机设计时必须加以认真考虑。工作时通过间隙而泄漏的流量过大,必然会对其整体效率产生重大影响。通常,在间隙处采用特殊结构来控制泄流量的大小,减少间隙对微燃机总体效率的影响。本文采用三维数值模拟对微燃机压气机与透平之间的间隙流动进行模拟分析,通过不同工况的比较以及对其内部流场进行分析,研究了气封内部流动特性,使得微燃机总体计算可考虑间隙引起的泄流对微燃机总体效率的影响。  相似文献   

17.
界面常质量流湍流(火用)传递   总被引:1,自引:0,他引:1  
导出了常温下充分发展湍流传递方程组,依此研究了界面常质量流管内湍流传递,研究了由于粘性耗散、径向和轴向传质不可逆性引起的损率随流体性质、边界条件及空间位置的变化规律,分析了不同地点由于不同过程产生损失的机理.对单位长度的总损率计算表明,对给定的流体单位长度总损率是传质单元几何参数、边界条件和雷诺数的多元函数,通过损率最小化可设计和优化传质单元.  相似文献   

18.
A pulsed chemical oxygen-iodine laser (COIL) using atomic iodine generated by volumetric discharge of CH 3 I is developed and tested. COIL with a gain length of 60 cm is energized by a square pipe-array jet singlet oxygen generator with basic hydrogen peroxide pumping circulations and operated at subsonic gas flow. Maximum output energy of 4.3 J, pulse duration of 50 μs, specific energy extraction from the active medium of 2.0 J/L, and the maximum chemical efficiency of 12.5% are achieved at a chlorine flow rate of 55 mmole/s.  相似文献   

19.
The study of the viability of hydrogen production as a sustainable energy source is a current challenge, to satisfy the great world energy demand. There are several techniques to produce hydrogen, either mature or under development. The election of the hydrogen production method will have a high impact on practical sustainability of the hydrogen economy. An important profile for the viability of a process is the calculation of energy and exergy efficiencies, as well as their overall integration into the circular economy. To carry out theoretical energy and exergy analyses we have estimated proposed hydrogen production using different software (DWSIM and MATLAB) and reference conditions. The analysis consolidates methane reforming or auto-thermal reforming as the viable technologies at the present state of the art, with reasonable energy and exergy efficiencies, but pending on the impact of environmental constraints as CO2 emission countermeasures. However, natural gas or electrolysis show very promising results, and should be advanced in their technological and maturity scaling. Electrolysis shows a very good exergy efficiency due to the fact that electricity itself is a high exergy source. Pyrolysis exergy loses are mostly in the form of solid carbon material, which has a very high integration potential into the hydrogen economy.  相似文献   

20.
When a steam driven jet pump is coupled to a gas turbine it can decrease the exhaust total pressure of the turbine and thus increase its output and the gas turbine thermal efficiency. If the steam is generated in a waste heat recovery the thermal efficiency of the engine may increase by 2–3%. The present paper studies the gas turbine-jet pump coupling, at various partial loads, by incorporating the long exhaust diffuser as a water preheater. In addition, additional firing may be introduced at the boiler inlet to keep the temperatures of the boiler constant. The results indicate that the efficiency of the gas turbine increases by 3–4% at optimum conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号