首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Te(C6F5)4 was prepared from the reactions of TeCl4 or Te(C6F5)2Cl2 with Grignard reagents or AgC6F5 in moderate to good yields. Substitution reactions with Me3SiX (X = Cl, Br, OSO2CF3), with equimolar amounts of Br2, with AgNO3 and with H[BF4] or BF3·OEt2 yielded the Te(C6F5)3X derivatives (X = Cl, Br, OSO2CF3, NO3, BF4). Oxidation reactions of Cd, Hg, and Pd0 complexes led to Te(C6F5)2 and the corresponding bis(pentafluorophenyl) derivatives M(C6F5)2 (M = Cd, Hg, Pd) and with InBr to In(C6F5)2Br. From very slow hydrolysis of Te(C6F5)4 the oxide Te(C6F5)2O was prepared. The thermal decomposition, the NMR and mass spectra of the partially new compounds are discussed. The crystal structures of Te(C6F5)3Br (monoclinic, P21/a, Z = 4), [Te(C6F5)3][OSO2CF3] (monoclinic, P21/n, Z = 16) and [Te(C6F5)2O]2 (triclinic, P1¯, Z = 2) were determined.  相似文献   

2.
Tris(pentafluorophenyl)borane, B(C6F5)3 reacts with triethylaluminum, AlEt3 to a mixture of Al(C6F5)3−nEtn and Al2(C6F5)6−nEtn compounds depending on the B/Al ratio. From excess borane to excess AlEt3 the species Al(C6F5)3 → Al(C6F5)2Et Al2(C6F5)4Et2 → Al2(C6F5)3Et3 → Al2(C6F5)2Et4 → Al2(C6F5)Et5 are formed and differentiated by their para-F signal in 19F NMR. The reaction between B(C6F5)3 and the higher aluminum alkyls, tri(iso-butyl)aluminum and tri(n-hexyl)aluminum AlR3 (R = i-Bu, n-C6H13) is slower and requires AlR3 excess to shift the C6F5 R exchange equilibria to almost complete formation of Al(C6F5)R2 and BR3. At equimolar ratio the equilibrium lies on the side of the unchanged borane together with its boranate [B(C6F5)3R] anion. For tri(n-octyl)aluminum even at large Al(n-C8H17)3 excess no C6F5 alkyl exchange can be observed, but boranate anions form.  相似文献   

3.
4.
Reductive elimination of C6F5-C6F5 from cis-[Pd(C6F5)2L] (L = cod, bpy, and dppb) was promoted by Br?nsted acids. HNO3 is a convenient acid for the formation of C6F5-C6F5 from [Pd(C6F5)2(cod)]. The products are controlled by the auxiliary ligand.  相似文献   

5.
Milligram amounts of the new compounds 1,9- and 1,7-C60F(CF3) (ca. 85:15 mixture of isomers) and C60F3(CF3) were isolated from a high-temperature C60/K2PtF6 reaction mixture and purified to 98 mol % compositional purity by two-dimensional high-performance liquid chromatography using Buckyprep and Buckyclutcher columns. The previously observed compounds C60F5(CF3) and C60F7(CF3) were also purified to 90+ mol % for the first time. Variable-temperature 19F NMR spectra of the mixture of C60F(CF3) isomers and the previously reported mixture of C(s)- and C1-C60F17(CF3) isomers demonstrate for the first time that fullerene(F)n(CF3)m derivatives with adjacent F and CF3 substituents exhibit slow-exchange limit hindered CF3 rotation spectra at -40 +/- 10 degrees C. The experimental and density functional theory (DFT) predicted deltaH++ values for CF3 rotation in 1,9-C60F(CF3) are 46.8(7) and 46 kJ mol(-1), respectively. The DFT-predicted deltaH++ values for 1,7-C60F(CF3), C(s)-C60F17(CF3), and C1-C60F17(CF3) are 20, 44, and 54 kJ mol(-1), respectively. The (> or = 4)J(FF) values from the slow-exchange-limit 19F spectra, which vary from ca. 0 to 48(1) Hz, show that the dominant nuclear spin-spin coupling mechanism is through-space coupling (i.e., direct overlap of fluorine atom lone-pair orbitals) rather than coupling through the sigma-bond framework. The 2J(FF) values within the CF3 groups vary from 107(1) to 126(1) Hz. Collectively, the NMR data provide an unambiguous set of (> or = 4)J(FF) values for three different compounds that can be correlated with DFT-predicted or X-ray diffraction derived distances and angles and an unambiguous set of 2J(FF) values that can serve as an internal standard for all future J(FF) calculations.  相似文献   

6.
The crystal structure of (C6F5S)3N has been examined. The compounds (C6F5S)2NX, X = SiMe3 and ½ Hg have been prepared from (C6F5S)2NH and characterised. In a number of other reactions, such as oxidation and irradiation, the S? N bond in (C6F5S)2NH was readily fractured, forming the disulfide, (C6F5S)2. The compound (C6F5S)3N has been found to be unreactive. Details of the mass and 13C NMR spectra of (C6F5S)nNH3–n, n = 1, 2, 3 are reported.  相似文献   

7.
Tetrakis(pentafluorophenyl)tellurium(IV), Te(C6F5)4, was prepared from the reaction of TeCl4 and Mg(C6F5)Br. Crystallization of the crude product from n‐pentane at ?25 °C gave suitable single crystals. The title compound crystallizes in the monoclinic space group P21/c (Z = 8) with two independent molecules per unit cell.  相似文献   

8.
The reactivities of the highly electrophilic boranes ClB(C(6)F(5))(2) (1) and [HB(C(6)F(5))(2)](n) (2) towards a range of organometallic reagents featuring metals from Groups 7-10 have been investigated. Salt elimination chemistry is observed 1 between and the nucleophilic anions eta(5)-C(5)R(5))Fe(CO)(2)](-)(R = H or Me) and [Mn(CO)(5)](-), leading to the generation of the novel boryl complexes (eta(5)-C(5)R(5))Fe(CO)(2)B(C(6)F(5))(2)[R = H (3) or Me (4)] and (OC)(5)MnB(C(6)F(5))(2) (5). Such systems are designed to probe the extent to which the strongly sigma-donor boryl ligand can also act as a pi-acceptor; a variety of spectroscopic, structural and computational probes imply that even with such strongly electron withdrawing boryl substituents, the pi component of the metal-boron linkage is a relatively minor one. Similar reactivity is observed towards the hydridomanganese anion [(eta(5)-C(5)H(4)Me)Mn(CO)(2)H](-), generating a thermally labile product identified spectroscopically as (eta(5)-C(5)H(4)Me)Mn(CO)(2)(H)B(C(6)F(5))(2) (6). Boranes 1 and 2 display different patterns of reactivity towards low-valent platinum and rhodium complexes than those demonstrated previously for less electrophilic reagents. Thus, reaction of 1 with (Ph(3)P)(2)Pt(H(2)C=CH(2)) ultimately generates EtB(C(6)F(5))(2) (10) as the major boron-containing product, together with cis-(Ph(3)P)(2)PtCl(2) and trans-(Ph(3)P)(2)Pt(C(6)F(5))Cl (9). The cationic platinum hydride [(Ph(3)P)(3)PtH](+) is identified as an intermediate in the reaction pathway. Reaction of with [(Ph(3)P)(2)Rh(mu-Cl)](2), in toluene on the other hand, appears to proceed via ligand abstraction with both Ph(3)P.HB(C(6)F(5))(2) (11) and the arene rhodium(I) cation [(Ph(3)P)(2)Rh(eta(6)-C(6)H(5)Me)](+) (14) ultimately being formed.  相似文献   

9.
Three new porphyrins bearing in the meso positions 4-(pyrazol-1-yl)-2,3,5,6-tetrafluorophenyl substituents have been prepared and characterized by nmr spectroscopy.  相似文献   

10.
11.
The thermodynamic and structural characteristics of Al(C6F(5)3-derived vs B(C6F5)3-derived group 4 metallocenium ion pairs are quantified. Reaction of 1.0 equiv of B(C6F5)3 or 1.0 or 2.0 equiv of Al(C6F5)3 with rac-C2H4(eta5-Ind)2Zr(CH3)2 (rac-(EBI)Zr(CH3)2) yields rac-(EBI)Zr(CH3)(+)H3CB(C6)F5)(3)(-) (1a), rac-(EBI)Zr(CH3)+H3CAl(C6F5)(3)(-) (1b), and rac-(EBI)Zr2+[H3CAl(C6F5)3](-)(2) (1c), respectively. X-ray crystallographic analysis of 1b indicates the H3CAl(C6F5)(3)(-) anion coordinates to the metal center via a bridging methyl in a manner similar to B(C6F5)3-derived metallocenium ion pairs. However, the Zr-(CH3)(bridging) and Al-(CH3)(bridging) bond lengths of 1b (2.505(4) A and 2.026(4) A, respectively) indicate the methyl group is less completely abstracted in 1b than in typical B(C6F5)3-derived ion pairs. Ion pair formation enthalpies (DeltaH(ipf)) determined by isoperibol solution calorimetry in toluene from the neutral precursors are -21.9(6) kcal mol(-1) (1a), -14.0(15) kcal mol(-1) (1b), and -2.1(1) kcal mol(-1) (1b-->1c), indicating Al(C6F5)3 to have significantly less methide affinity than B(C6F5)3. Analogous experiments with Me2Si(eta5-Me4C5)(t-BuN)Ti(CH3)2 indicate a similar trend. Furthermore, kinetic parameters for ion pair epimerization by cocatalyst exchange (ce) and anion exchange (ae), determined by line-broadening in VT NMR spectra over the range 25-75 degrees C, are DeltaH++(ce) = 22(1) kcal mol(-1), DeltaS++(ce) = 8.2(4) eu, DeltaH++(ae) = 14(2) kcal mol(-1), and DeltaS++(ae) = -15(2) eu for 1a. Line broadening for 1b is not detectable until just below the temperature where decomposition becomes significant ( approximately 75-80 degrees C), but estimation of the activation parameters at 72 degrees C gives DeltaH++(ce) approximately 22 kcal mol(-1)and DeltaH++(ae) approximately 16 kcal mol(-1), consistent with the bridging methide being more strongly bound to the zirconocenium center than in 1a.  相似文献   

12.
Kofod P  Harris P 《Inorganic chemistry》2004,43(8):2680-2688
The (13)C chemical shifts of methylcobalt(III) compounds with saturated amine ligands in cis positions to the methyl group and a monodentate ligand, L = CN(-), NH(3), NO(2)(-), N(3)(-), H(2)O, or OH(-), in the trans position are reported. The amine ligands used, 1,2-ethanediamine (en), 1,3-propanediamine (tn), N,N'-bis(2-aminoethyl)-1,3-propanediamine (2,3,2-tet), N,N'-bis(3-aminopropyl)-1,2-ethanediamine (3,2,3-tet), and 1,4,8,11-tetraazacyclotetradecane (cyclam), all exert an apparent cis influence on the (13)C resonance signal of the coordinated methyl group. In the trans-[Co(en)(2)(CH(3))(L)](n+) series the (15)N resonance frequency of the coordinated en has also been measured. The influence of L on the en (15)N chemical shifts is reverse the influence on the methyl (13)C chemical shifts except in the case of L = NO(2)(-), which affects a further deshielding of the amine nitrogen nucleus. The methyl (1)J(CH) coupling constants in the trans-[Co(en)(2)(CH(3))(L)](n+) series range from 128.09 Hz (L = CN(-)) to 134.11 Hz (L = H(2)O). The crystal structures of trans-[Co(en)(2)(CH(3))(ClZnCl(3))], trans-[Co(3,2,3-tet)(CH(3))(N(3))]ClO(4), trans,trans-[(CH(3))(en)(2)Co(CN)Co(en)(2)(CH(3))](PF(6))(3)(CH(3)CN), and cis-[Co(en)(2)(CH(3))(NH(3))]ZnCl(4) were determined from low-temperature X-ray diffraction data.  相似文献   

13.
Reaction between 7-azaindole and B(C6F5)3 quantitatively yields 7-(C6F5)3B-7-azaindole (4), in which B(C6F5)3 coordinates to the pyridine nitrogen of 7-azaindole, leaving the pyrrole ring unreacted even in the presence of a second equivalent of B(C6F5)3. Reaction of 7-azaindole with H2O-B(C6F5)3 initially produces [7-azaindolium]+[HOB(C6F5)3]- (5) which slowly converts to 4 releasing a H2O molecule. Pyridine removes the borane from the known complexes (C6F5)3B-pyrrole (1) and (C6F5)3B-indole (2), with formation of free pyrrole or indole, giving the more stable adduct (C6F5)3B-pyridine (3). The competition between pyridine and 7-azaindole for the coordination with B(C6F5)3 again yields 3. The molecular structures of compounds 4 and 5 have been determined both in the solid state and in solution and compared to the structures of other (C6F5)3B-N-heterocycle complexes. Two dynamic processes have been found in compound 4. Their activation parameters (DeltaH = 66 (3) kJ/mol, DeltaS = -18 (10) J/mol K and DeltaH = 76 (5) kJ/mol, DeltaS = -5 (18) J/mol K) are comparable with those of other (C6F5)3B-based adducts. The nature of the intramolecular interactions that result in such energetic barriers is discussed.  相似文献   

14.
15.
16.
17.
Graphite monofluoride (CF)(n) was studied by solid-state NMR. (19)F spin-lattice relaxation time T(1) and second moment measurements of the (19)F line are presented. A "chair" conformation structure is found to be compatible with the experimental data. Relaxation is shown to be mainly due to paramagnetic oxygen. The presence of a molecular motion with an activation energy of 1.685 kJ.mol(-1) (202.7 K) is also evidenced. (19)F magic angle spinning (MAS) NMR and (13)C MAS NMR with (19)F to (13)C cross-polarization allows the determination of CF and CF(2) groups. Reintroduction of dipolar coupling by cross-polarization is used for C-F bond length determination (0.138 +/- 0.001 nm).  相似文献   

18.
The additions of two sulfur fluoride derivatives (SF(3)C(6)F(5) and SF(3)CN) to a flowing afterglow were studied by variable electron and neutral density mass spectrometry. Data collection and analysis were complicated by the high reactivity of the neutral species. Both species readily dissociatively attach thermal electrons at 300 K to yield SF(3) + X(-) (X = C(6)F(5), CN). Attachment to SF(3)C(6)F(5) also results in SF(3)(-) + C(6)F(5) as a minor product channel. The determined electron attachment rate constants were 1(-0.6) (+1) × 10(-7) cm(3) s(-1) for SF(3)C(6)F(5), a lower limit of 1 × 10(-8) cm(3) s(-1) for SF(3)CN, and 4 ± 3 × 10(-9) cm(3) s(-1) for SF(3). Mutual neutralization rate constants of C(6)F(5)(-) and CN(-) with Ar(+) at 300 K were determined to be 5.5(-1.6) (+1.0) × 10(-8) and 3.0 ± 1 × 10(-8) cm(3) s(-1), respectively.  相似文献   

19.
Tris(perfluoroorgano)bismuth compounds Bi(Rf)3 (Rf = CF3, C2F5, n-C3F7, n-C4F9, n-C6F13, n-C8F17, C6F5) are easily prepared in high yields from the reactions of perfluoroorganocadmium complexes with BiCl3, or BiBr3 in aprotic solvents. The perfluoroorganobismuth halides intermediates in these reactions have been detected by NMR spectroscopy.  相似文献   

20.
The costunolide lactone, a sesquiterpene compound isolated from Zaluzania triiloba species, reacted with several dihalocarbene sources produced by trihaloform-NaOH under successive phase transfer reactions yielding mono-, bis- and tris-dihalocyclopropane adducts. The structures, as well as the configurational assignments of the different derivatives, were established by (1)H and (13)C NMR spectroscopy and assisted by X-ray crystallographic and molecular modelling studies. The specific shielding of protons in the neighbourhood of different halogens on the cyclopropane moieties was correlated to the pseudocontact interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号