首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is often assumed that at frequencies in the tuning-curve tail there is a passive, constant coupling of basilar-membrane motion to inner hair cell (IHC) stereocilia. This paper shows changes in the phase of auditory-nerve-fiber (ANF) responses to tail-frequency tones and calls into question whether basilar-membrane-to-IHC coupling is constant. In cat ANFs with characteristic frequencies > or = 10 kHz, efferent effects on the phase of ANF responses to tail-frequency tones were measured. Efferent stimulation caused substantial changes in ANF phase (deltaphi) (range -80 degrees to +60 degrees, average -15 degrees, a phase lag) with the largest changes at sound levels near threshold and 3-4 octaves below characteristic frequency (CF). At these tail frequencies, efferent stimulation had much less effect on the phase of the cochlear microphonic (CM) than on ANF phase. Thus, since CM is synchronous with basilar-membrane motion for low-frequency stimuli in the cochlear base, the efferent-induced change in ANF phase is unlikely to be due entirely to a change in basilar-membrane phase. At tail frequencies, ANF phase changed with sound level (often by 90 degrees-180 degrees) and the deltaphi from a fiber was positively correlated with the slope of its phase-versus-sound-level function at the same frequency, as if deltaphi were caused by a 2-4 dB increase in sound level. This correlation suggests that the processes that produce the change in ANF phase with sound level at tail frequencies are also involved in producing deltaphi. It is hypothesized that both efferent stimulation and increases in sound level produce similar phase changes because they both produce a similar mix of cochlear vibrational modes.  相似文献   

2.
Despite the insights obtained from click responses, the effects of medial-olivocochlear (MOC) efferents on click responses from single-auditory-nerve (AN) fibers have not been reported. We recorded responses of cat single AN fibers to randomized click level series with and without electrical stimulation of MOC efferents. MOC stimulation inhibited (1) the whole response at low sound levels, (2) the decaying part of the response at all sound levels, and (3) the first peak of the response at moderate to high sound levels. The first two effects were expected from previous reports using tones and are consistent with a MOC-induced reduction of cochlear amplification. The inhibition of the AN first peak, which was strongest in the apex and middle of the cochlea, was unexpected because the first peak of the classic basilar-membrane (BM) traveling wave receives little or no amplification. In the cochlear base, the click data were ambiguous, but tone data showed particularly short group delays in the tail-frequency region that is strongly inhibited by MOC efferents. Overall, the data support the hypothesis that there is a motion that bends inner-hair-cell stereocilia and can be inhibited by MOC efferents, a motion that is present through most, or all, of the cochlea and for which there is no counterpart in the classic BM traveling wave.  相似文献   

3.
Responses to amplitude-modulated tones in the auditory nerve of the cat.   总被引:3,自引:0,他引:3  
Sinusoidally amplitude-modulated (AM) tones are frequently used in psychophysical and physiological studies, yet a comprehensive study on the coding of AM tones in the auditory nerve is lacking. AM responses of single auditory-nerve fibers of the cat are studied, systematically varying modulation depth, frequency, and sound level. Synchrony-level functions were nonmonotonic with maximum values that were inversely correlated with spontaneous rate (SR). In most fibers, envelope phase-locking showed a positive gain. Modulation transfer functions were uniformly low pass. Their corner frequency increased with characteristic frequency (CF), but changed little for CFs above 10 kHz. The highest modulation frequencies to which phase locking occurred were more than 0.8 oct lower than the highest frequencies to which phase locking to pure tones occurs. Cumulative, or unwrapped, phase increased linearly with modulation frequency: The slope was inversely related to CF, and slightly higher than group delays reported for pure tones. High SR, low CF fibers showed the poorest envelope phase locking. In some low CF fibers, phase locking increased at high levels, associated with "peak-splitting" phenomena. Changes in average rate due to modulation were small, and could be enhancement or suppression.  相似文献   

4.
5.
Middle-ear sound transmission was evaluated as the middle-ear transfer admittance H(MY) (the ratio of stapes velocity to ear-canal sound pressure near the umbo) in gerbils during closed-field sound stimulation at frequencies from 0.1 to 60 kHz, a range that spans the gerbil's audiometric range. Similar measurements were performed in two laboratories. The H(MY) magnitude (a) increased with frequency below 1 kHz, (b) remained approximately constant with frequency from 5 to 35 kHz, and (c) decreased substantially from 35 to 50 kHz. The H(MY) phase increased linearly with frequency from 5 to 35 kHz, consistent with a 20-29 micros delay, and flattened at higher frequencies. Measurements from different directions showed that stapes motion is predominantly pistonlike except in a narrow frequency band around 10 kHz. Cochlear input impedance was estimated from H(MY) and previously-measured cochlear sound pressure. Results do not support the idea that the middle ear is a lossless matched transmission line. Results support the ideas that (1) middle-ear transmission is consistent with a mechanical transmission line or multiresonant network between 5 and 35 kHz and decreases at higher frequencies, (2) stapes motion is pistonlike over most of the gerbil auditory range, and (3) middle-ear transmission properties are a determinant of the audiogram.  相似文献   

6.
Two-tone "synchrony suppression" was studied in responses of single auditory nerve fibers recorded from anesthetized cats. Suppression thresholds for suppressor tones set to a fiber's characteristic frequency (CF) were approximately equal to discharge rate thresholds for CF tones. Suppression thresholds above and below CF were usually lower than the corresponding discharge rate thresholds. However, at all frequencies studied (including CF), suppression thresholds were higher than the corresponding thresholds for discharge synchronization. Across fibers, rates of suppression growth for suppressors at CF were greatest in low-CF fibers and least in high-CF fibers, and there was a systematic decrease in suppression growth rate at CF as CF increased. Within fibers, rates of suppression growth above CF were typically less than at CF, and slopes were monotonically decreasing functions of frequency. Within-fiber rates of suppression growth below CF were variable, but they usually were greater than rates of growth at CF. Iso-suppression contours (frequencies and intensities producing criterion amounts of suppression) indicated that tones near CF are the most potent suppressors at near-threshold intensities, and that the frequency producing the most suppression usually shifts downward as the amount of suppression increases. These data support the notion that synchrony suppression arises primarily as a passive consequence of hair cell activation.  相似文献   

7.
Basilar membrane (BM) velocity was measured at a site 3.5 mm from the basal end of the chinchilla cochlea using the M?ssbauer technique. The threshold of the compound action potential recorded at the round window in response to tone bursts was used as an indicator of the physiological state of the cochlea. The BM input-output functions display a compressive nonlinearity for frequencies around the characteristic frequency (CF, 8 to 8.75 kHz), but are linear for frequencies below 7 and above 10.5 kHz. In preparations with little surgical damage, isovelocity tuning curves at 0.1 mm/s are sharply tuned, have Q10's of about 6, minima as low as 13 dB SPL, tip-to-tail ratios (at 1 kHz) of 56 to 76 dB, and high-frequency slopes of about 300 dB/oct. These mechanical responses are as sharply tuned as frequency-threshold curves of chinchilla auditory nerve fibers with corresponding CF. There is a progressive loss of sensitivity of the mechanical response with time for the frequencies around CF, but not for frequencies on the tail of the tuning curve. In some experiments the nonlinearity was maintained for several hours, in spite of a considerable loss of sensitivity of the BM response. High-frequency plateaus were observed in both isovelocity tuning curves and phase-frequency curves.  相似文献   

8.
A commonly accepted physiological model for lateralization of low-frequency sounds by interaural time delay (ITD) stipulates that binaural comparison neurons receive input from frequency-matched channels from each ear. Here, the effects of hypothetical interaural frequency mismatches on this model are reported. For this study, the cat's auditory system peripheral to the binaural comparison neurons was represented by a neurophysiologically derived model, and binaural comparison neurons were represented by cross-correlators. The results of the study indicate that, for binaural comparison neurons receiving input from one cochlear channel from each ear, interaural CF mismatches may serve to either augment or diminish the effective difference in ipsilateral and contralateral axonal time delays from the periphery to the binaural comparison neuron. The magnitude of this increase or decrease in the effective time delay difference can be up to 400 microseconds for CF mismatches of 0.2 octaves or less for binaural neurons with CFs between 250 Hz and 2.5 kHz. For binaural comparison neurons with nominal CFs near 500 Hz, the 25-microsecond effective time delay difference caused by a 0.012-octave CF mismatch is equal to the ITD previously shown to be behaviorally sufficient for the cat to lateralize a low-frequency sound source.  相似文献   

9.
Auditory enhancement of certain frequencies can occur through prior stimulation of surrounding frequency regions. The underlying neural mechanisms are unknown, but may involve stimulus-driven changes in cochlear gain via the medial olivocochlear complex (MOC) efferents. Cochlear implants (CIs) bypass the cochlea and stimulate the auditory nerve directly. If the MOC plays a critical role in enhancement then CI users should not exhibit this effect. Results using vowel stimuli, with and without preceding sounds designed to enhance formants, provided evidence of auditory enhancement in both normal-hearing listeners and CI users, suggesting that vowel enhancement is not mediated solely by cochlear effects.  相似文献   

10.
The cochlear plays a vital role in the sense and sensitivity of hearing; however, there is currently a lack of knowledge regarding the relationships between mechanical transduction of sound at different intensities and frequencies in the cochlear and the neurochemical processes that lead to neuronal responses in the central auditory system. In the current study, we introduced manganese-enhanced MRI (MEMRI), a convenient in vivo imaging method, for investigation of how sound, at different intensities and frequencies, is propagated from the cochlear to the central auditory system. Using MEMRI with intratympanic administration, we demonstrated differential manganese signal enhancements according to sound intensity and frequencies in the ascending auditory pathway of the rat after administration ofintratympanicMnCl2.Compared to signal enhancement without explicit sound stimuli, auditory structures in the ascending auditory pathway showed stronger signal enhancement in rats who received sound stimuli of 10 and 40 kHz. In addition, signal enhancement with a stimulation frequency of 40 kHz was stronger than that with 10 kHz. Therefore, the results of this study seem to suggest that, in order to achieve an effective response to high sound intensity or frequency, more firing of auditory neurons, or firing of many auditory neurons together for the pooled neural activity is needed.  相似文献   

11.
Auditory steady-state responses (ASSRs) were elicited by simultaneously presenting multiple AM (amplitude-modulated) tones with carrier frequencies of 500, 1000, 2000, and 4000 Hz and modulation frequencies of 77, 85, 93, and 102 Hz, respectively. Responses were also evoked by separately presenting single 500- or 2000-Hz AM tones. The objectives of this study were (i) to determine the cochlear place specificity of single and multiple ASSRs using high-pass noise masking and derived-band responses, and (ii) to determine if there were any differences between single- and multiple-stimulus conditions. For all carrier frequencies, derived-band ASSRs for 1-octave-wide derived bands ranging in center frequency from 0.25 to 8 kHz had maximum amplitudes within a 1/2 octave of the carrier frequency. For simultaneously presented AM tones of 500, 1000, 2000, and 4000 Hz, bandwidths for the function of derived-band ASSR amplitude by derived-band center frequency were 476, 737, 1177, and 3039 Hz, respectively. There were no significant differences when compared to bandwidths of 486 and 1371 for ASSRs to AM tones of 500 or 2000 Hz presented separately. Results indicate that ASSRs to moderately intense stimuli (60 dB SPL) reflect activation of reasonably narrow cochlear regions, regardless of presenting AM tones simultaneously or separately.  相似文献   

12.
Low-frequency stimuli (40- to 1000-Hz tones) have been used to correlate the motion of the 8-to 9-kHz place of the chinchilla basilar membrane with the cochlear microphonics recorded at the round window and with the responses of auditory nerve fibers with appropriate characteristic frequency. At the lowest stimulus frequencies, maximum displacement of the basilar membrane toward scala tympani occurs in near synchrony with maximum rarefaction at the eardrum and maximum negativity at the round window; at higher frequencies, the mechanical and microphonic response phases progressively lag rarefaction, reaching - 240 deg at 1000 Hz. At most frequencies (40-1000 Hz) near-threshold neural responses, once corrected for neural travel-time and synaptic delays, somewhat lead (by some 40 deg) maximal scala tympani displacement and maximal negativity of the round window microphonics. The variation of sensitivity with frequency is similar for basilar membrane displacement and microphonic responses: Under open-bulla conditions, sensitivity is constant for frequencies between 100 and 1000 Hz; below 100 Hz, sensitivity decreases at rates close to 12 dB/oct toward lower frequencies. Neural response sensitivity matches BM displacement more closely than BM velocity.  相似文献   

13.
The perceptual significance of the cochlear amplifier was evaluated by predicting level-discrimination performance based on stochastic auditory-nerve (AN) activity. Performance was calculated for three models of processing: the optimal all-information processor (based on discharge times), the optimal rate-place processor (based on discharge counts), and a monaural coincidence-based processor that uses a non-optimal combination of rate and temporal information. An analytical AN model included compressive magnitude and level-dependent-phase responses associated with the cochlear amplifier, and high-, medium-, and low-spontaneous-rate (SR) fibers with characteristic frequencies (CFs) spanning the AN population. The relative contributions of nonlinear magnitude and nonlinear phase responses to level encoding were compared by using four versions of the model, which included and excluded the nonlinear gain and phase responses in all possible combinations. Nonlinear basilar-membrane (BM) phase responses are robustly encoded in near-CF AN fibers at low frequencies. Strongly compressive BM responses at high frequencies near CF interact with the high thresholds of low-SR AN fibers to produce large dynamic ranges. Coincidence performance based on a narrow range of AN CFs was robust across a wide dynamic range at both low and high frequencies, and matched human performance levels. Coincidence performance based on all CFs demonstrated the "near-miss" to Weber's law at low frequencies and the high-frequency "mid-level bump." Monaural coincidence detection is a physiologically realistic mechanism that is extremely general in that it can utilize AN information (average-rate, synchrony, and nonlinear-phase cues) from all SR groups.  相似文献   

14.
Stimulus frequency otoacoustic emissions (SFOAEs) measured using a suppressor tone in human ears are analogous to two-tone suppression responses measured mechanically and neurally in mammalian cochleae. SFOAE suppression was measured in 24 normal-hearing adults at octave frequencies (f(p)=0.5-8.0 kHz) over a 40 dB range of probe levels (L(p)). Suppressor frequencies (f(s)) ranged from -2.0 to 0.7 octaves re: f(p), and suppressor levels ranged from just detectable suppression to full suppression. The lowest suppression thresholds occurred for "best" f(s) slightly higher than f(p). SFOAE growth of suppression (GOS) had slopes close to one at frequencies much lower than best f(s), and shallow slopes near best f(s), which indicated compressive growth close to 0.3 dBdB. Suppression tuning curves constructed from GOS functions were well defined at 1, 2, and 4 kHz, but less so at 0.5 and 8.0 kHz. Tuning was sharper at lower L(p) with an equivalent rectangular bandwidth similar to that reported behaviorally for simultaneous masking. The tip-to-tail difference assessed cochlear gain, increasing with decreasing L(p) and increasing f(p) at the lowest L(p) from 32 to 45 dB for f(p) from 1 to 4 kHz. SFOAE suppression provides a noninvasive measure of the saturating nonlinearities associated with cochlear amplification on the basilar membrane.  相似文献   

15.
Piano tones have partials whose frequencies are sharp relative to harmonic values. A listening test was conducted to determine the effect of inharmonicity on pitch for piano tones in the lowest three octaves of a piano. Nine real tones from the lowest three octaves of a piano were analyzed to obtain frequencies, relative amplitudes, and decay rates of their partials. Synthetic inharmonic tones were produced from these results. Synthetic harmonic tones, each with a twelfth of a semitone increase in the fundamental, were also produced. A jury of 21 listeners matched the pitch of each synthetic inharmonic tone to one of the synthetic harmonic tones. The effect of the inharmonicity on pitch was determined from an average of the listeners' results. For the nine synthetic piano tones studied, pitch increase ranged from approximately two and a half semitones at low fundamental frequencies to an eighth of a semitone at higher fundamental frequencies.  相似文献   

16.
Near-Poisson variability in auditory-nerve (AN) responses limits the accuracy of automated tuning-curve algorithms. Here, a typical adaptive tuning-curve algorithm was used with a physiologically realistic AN model with and without the inclusion of neural randomness. Response randomness produced variability in Q(10) estimates that was nearly as large as in AN data. Results suggest that it is sufficient for AN models to specify frequency selectivity based on mean Q(10) values at each characteristic frequency (CF). Errors in estimates of CF, which decreased from +/-0.2 octaves at low frequencies to +/-0.05 octaves at high frequencies, are significant for studies of spatiotemporal coding.  相似文献   

17.
Distortion product otoacoustic emissions (DPOAEs) evoked by low-level tones are a sensitive indicator of outer hair cell (OHC) function. High-level DPOAEs are less vulnerable to cochlear insult, and their dependence on the OHC function is more controversial. Here, the mechanism underlying high-level DPOAE generation is addressed using a mutant mouse line lacking prestin, the molecular motor driving OHC somatic motility, required for cochlear amplification. With prestin deletion, attenuated DPOAEs were measurable at high sound levels. DPOAE thresholds were shifted by approximately 50 dB, matching the loss of cochlear amplifier gain measured in compound action potentials. In contrast, at high sound levels, distortion products in the cochlear microphonic (CM) of mutants were not decreased re wildtypes (expressed re CM at the primaries). Distortion products in both CM and otoacoustic emissions disappeared rapidly after death. The results show that OHC somatic motility is not necessary for the production of DPOAEs at high SPLs. They also suggest that the small, physiologically vulnerable DPOAE that remains without prestin-based motility is due directly to the mechanical nonlinearity associated with stereociliary transduction, and that this stereocilia mechanical nonlinearity is robustly coupled to the motion of the cochlear partition to the extent that it can drive the middle ear.  相似文献   

18.
To investigate how hearing loss of primarily cochlear origin affects the loudness of brief tones, loudness matches between 5- and 200-ms tones were obtained as a function of level for 15 listeners with cochlear impairments and for seven age-matched controls. Three frequencies, usually 0.5, 1, and 4 kHz, were tested in each listener using a two-interval, two--alternative forced--choice (2I, 2AFC) paradigm with a roving-level, up-down adaptive procedure. Results for the normal listeners generally were consistent with published data [e.g., Florentine et al., J. Acoust Soc. Am. 99, 1633-1644 (1996)]. The amount of temporal integration--defined as the level difference between equally loud short and long tones--varied nonmonotonically with level and was largest at moderate levels. No consistent effect of frequency was apparent. The impaired listeners varied widely, but most showed a clear effect of level on the amount of temporal integration. Overall, their results appear consistent with expectations based on knowledge of the general properties of their loudness-growth functions and the equal-loudness-ratio hypothesis, which states that the loudness ratio between equal-SPL long and brief tones is the same at all SPLs. The impaired listeners' amounts of temporal integration at high SPLs often were larger than normal, although it was reduced near threshold. When evaluated at equal SLs, the amount of temporal integration well above threshold usually was in the low end of the normal range. Two listeners with abrupt high-frequency hearing losses (slopes > 50 dB/octave) showed larger-than-normal maximal amounts of temporal integration (40 to 50 dB). This finding is consistent with the shallow loudness functions predicted by our excitation-pattern model for impaired listeners [Florentine et al., in Modeling Sensorineural Hearing Loss, edited by W. Jesteadt (Erlbaum, Mahwah, NJ, 1997), pp. 187-198]. Loudness functions derived from impaired listeners' temporal-integration functions indicate that restoration of loudness in listeners with cochlear hearing loss usually will require the same gain whether the sound is short or long.  相似文献   

19.
For 68 temporal bones, frequency curves for the round window volume displacement have been measured for a constant sound pressure at the eardrum. Phase curves were measured for 33 of the specimens. The levels averaged amplitude curve is approximately flat below 1 kHz, where the round window volume displacement per unit sound pressure at the eardrum is 6.8 X 10(-5) mm3/Pa, and falls off by about 15 dB/oct at higher frequencies. For the 20 ears having the largest sound transmission magnitude at low frequencies, the corresponding amplitude curve is displaced about 5 dB towards higher levels. The phase of the round window volume displacement lags the eardrum sound pressure phase. In average for 33 temporal bones, the phase lag increases from zero at the lowest frequencies to pi near 2 kHz and to about 1.5 pi at 10 kHz.  相似文献   

20.
Steady-state evoked potential responses were measured to binaural amplitude-modulated (AM) and combined amplitude- and frequency-modulated (AM/FM) tones. For awake subjects, AM/FM tones produced larger amplitude responses than did AM tones. Awake and sleeping responses to 30-dB HL AM/FM tones were compared. Response amplitudes were lower during sleep and the extent to which they differed from awake amplitudes was dependent on both carrier and modulation frequencies. Background EEG noise at the stimulus modulation frequency was also reduced during sleep and varied with modulation frequency. A detection efficiency function was used to indicate the modulation frequencies likely to be most suitable for electrical estimation of behavioral threshold. In awake subjects, for all carrier frequencies tested, detection efficiency was highest at a modulation frequency of 45 Hz. In sleeping subjects, the modulation frequency regions of highest efficiency varied with carrier frequency. For carrier frequencies of 250 Hz, 500 Hz, and 1 kHz, the highest efficiencies were found in two modulation frequency regions centered on 45 and 90 Hz. For 2 and 4 kHz, the highest efficiencies were at modulation frequencies above 70 Hz. Sleep stage affected both response amplitude and background EEG noise in a manner that depended on modulation frequency. The results of this study suggest that, for sleeping subjects, modulation frequencies above 70 Hz may be best when using steady-state potentials for hearing threshold estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号