首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of a five-level atomic system involving electromagnetically induced transparency with four light fields is investigated. Two different light-atom configurations are considered, and their efficiency in generating large nonlinear cross-phase shifts compared. The dispersive properties of those schemes are analyzed in detail, and the conditions leading to group velocity matching for two of the light fields are identified. An analytical treatment based on amplitude equations is used in order to obtain approximate solutions for the susceptibilities, which are shown to fit well with the numerical solution of the full Bloch equations in a large parameter region.  相似文献   

2.
We present direct observation of the velocity-selective optical pumping of the Cs ground state hyperfine levels induced by the femtosecond (fs) laser oscillator centered at either D2 (6 2S1/2↦6 2P3/2, 852 nm) or D1 (6 P1/2, 894 nm) cesium line. We utilized previously developed modified direct frequency comb spectroscopy (DFCS) which uses a fixed frequency comb for the excitation and a weak cw scanning probe laser centered at the 133Cs 6 2S1/2↦6 2P3/2 transition (D2 line) for ground levels population monitoring. The frequency comb excitation changes the usual Doppler absorption profile into a specific periodic, comblike structure. The mechanism of the velocity selective population transfer between the Cs ground state hyperfine levels induced by fs pulse train excitation is verified in a theoretical treatment of the multilevel atomic system subjected to a pulse train resonant field interaction.  相似文献   

3.
A theoretical analysis of the spectral linewidth of V-type inversionless and Raman lasers is presented. First, we examine the effects of the atomic coherence between dressed states and the Autler-Townes splitting on the linewidth. It is demonstrated that near above threshold, the V inversionless laser has a narrower linewidth than that of the two-level laser. Instead of the dressed coherence, it is the Autler-Townes splitting that is responsible for the linewidth reduction though the dressed coherence determines the laser gain. Next, we explore the effects of the generated laser intensity on the linewidth. It is shown that the linewidths of the V inversionless and Raman lasers follow the usual 1/I decrease for smaller laser intensity I, but a slower decrease than 1/I for larger laser intensity. For the V Raman laser, even more surprisingly, with the laser intensity increasing, the linewidth appreciably increases as well. As a result, well above threshold, the V inversionless and Raman lasers may have a larger linewidth than that of the two-level laser. Finally, a comparison is made between the V lasers and the Λ lasers. It is found that the linewidth of the Λ inversionless laser shows a fast 1/I 2 decay under optimum conditions. Received 25 October 1999 and Received in final form 10 March 2000  相似文献   

4.
We study the absorption spectra of a degenerate V-type atom, where a resonant driving field and a probe field drive different branches of transitions and a dc field is applied to drive the transition between two excited states. The effects of vacuum induced coherence (VIC) on the absorption spectra are investigated. It is demonstrated that in some special cases the VIC can lead to the depression of absorption and narrow resonance. The origin of these features are discussed. When the pump field and the dc field have the same intensity, it is interesting to find that the whole absorption spectrum comes mainly from the absorptions induced by the interferences among different transitions between dressed states.  相似文献   

5.
We theoretically investigate the features of two-photon absorption in a five-level atomic system with interacting dark resonances. It is found that two-photon absorption can be completely suppressed at two different frequencies due to the application of two coherent coupling fields and the atomic system exhibits double electromagnetically induced transparency windows against two-photon absorption. The position and width of the double two-photon transparency windows can be controlled via properly adjusting the frequency detuning and the intensities of the two coupling fields. In addition, one enhanced narrow central line can be observed in the two-photon absorption spectra, which may find applications in high-precision spectroscopy. Form a physical point of view, we explicitly explain these results in terms of quantum interference induced by three different two-photon excitation channels in the dressed-state picture.  相似文献   

6.
In this paper a detailed experimental study of Coherent Population Trapping (CPT) effect on sodium induced by a dye-laser operating in a three-mode regime is presented and a detailed analysis of the role of velocity changing collisions is made. These collisions show a very small relaxation effect on the dark resonances which are visible even at high pressures. For the first time we demonstrate the persistence of the ground state coherence to pressures up to one atmosphere for a relatively “heavy” buffer gas like argon. The experimental results have been compared with theory and a very good agreement has been obtained. Preliminary results on the effect of Na-N2 collisions on Coherent Population Trapping are presented. Received: 5 October 1998 / Received in final form: 3 December 1998  相似文献   

7.
We examine in detail the quantum memory technique for photons in a double Λ atomic ensemble in this work. The novel application of the present technique to create two different quantum probe fields as well as entangled states of them is proposed. A larger zero-degeneracy class besides dark-state subspace is investigated and the adiabatic condition is confirmed in the present model. We extend the single-mode quantum memory technique to the case with multi-mode probe fields, and reveal the exact pulse matching phenomenon between two quantized pulses in the present system.  相似文献   

8.
9.
We study stable propagation of multiple shape-preserving optical pulses in an inhomogeneously broadened multi-level atomic medium. By analytically solving the Maxwell-Schr?dinger equations governing the evolution of N coupled optical fields and atomic amplitudes we show that N pulsed optical waves coupling to (N+1)-levels can be automatically matched with the same soliton waveform and identical yet very slow propagation velocity. Several sets of coupled soliton solutions for two different (N+1)-level models are given and their stability is studied by using a numerical simulation.  相似文献   

10.
In order to achieve the phase-sensitive probe gain without population inversion, we investigate a three-level Λ-type atomic system driven by a coherent field and a microwave field. It is shown that, by modulating the relative phase of applied fields, we can obtain quite high inversionless gain at different probe detunings and change the gain behavior of the probe correspondingly. We find that amplitudes of the coherent field and the microwave field are also important factors that can result in different gain behavior of the probe. Here, we use the microwave field to induce the quantum coherence between the two ground levels, which is necessary for phase-sensitive effects, since it can result in the interference between two different transition channels. Received 20 June 2002 / Received in final form 5 December 2002 Published online 4 March 2003  相似文献   

11.
We study a four-level double-Λ atomic ensemble interacting with two time-dependent signal fields and two stationary control fields. Though, in each Λ channel, a pair of signal and control fields couple resonantly with the two lower levels of atoms, the occurrences of electromagnetically induced transparency (EIT) is affected by the coherence of the four fields. In the discussion of atomic susceptibilities, we show that the quantum coherence between the two lower levels can be either formed or released according to the phase matching of the four fields. We analyze the propagation equation of the two signal fields, and find two characteristic solutions: the stationary transmission wave and the transient decay wave. The former corresponds to a correlated EIT effect in which two signal pulses are shape-matched. The latter is an opposite effect to the correlated EIT in which two pulses quench simultaneously, thus named as the correlated two-signal absorption (CTSA). We propose the CTSA condition in correspondence with the EIT condition. The numerical simulation shows that the double-Λ configuration is capable of manipulating synchronous optical signals and thus provides multiplicity and versatility in quantum information process.  相似文献   

12.
We examine the decay dynamics of a free four-level system in the -V configuration. Quantum interference strongly manifests itself in this system, as can be seen by looking at the combined spectral distribution of the two emitted photons and at the time evolution of the intermediate-level populations, whose effective lifetimes can become very long under certain conditions for the atomic parameters. This effect is attributable to a population transfer mechanism induced in the time evolution equations by the Fano terms, also responsible for the strong modifications of the spectral correlation between the emitted photons which we analyze in detail. Finally, population trapping can also occur when the two intermediate levels are degenerate. Received: 20 October 1998  相似文献   

13.
The quantum theory of the cold atom micromaser including the effects of gravity is established in the general case where the cavity mode and the atomic transition frequencies are detuned. We show that atoms which classically would not reach the interaction region are able to emit a photon inside the cavity. The system turns out to be extremely sensitive to the detuning and in particular to its sign. A method to solve the equations of motion for non resonant atom-field interaction and arbitrary cavity modes is presented.  相似文献   

14.
The possibility of storage of quantum information with photons is studied in the case of resonant transitions via many close lying exciton levels in a solid with impurity -atoms. The upper levels of the impurity atom form resonant Fano states, similar to the autoionization atomic states, due to the configuration interaction with the continuum of the exciton band. In this case slowing of light pulses is shown to be realistic, in the presence of the control field, down to the group velocity much lower than that in vacuum. The possibility of storage and reconstruction of a quantum pulse is studied in the case of the instantaneous switching on/off of the control field. It is shown that the signal quantum pulse cannot be stored undistorted for differing values of Fano parameters and for non-zero two-photon detuning and decay rate between the lower levels (decoherence). However, for small difference of the Fano parameters and for small values of the two-photon detuning and the decoherence there is no distortion in the case where the length of the pulse is much longer than the linear absorption (amplification) length, so the shape and quantum state of the light pulse can be restored.  相似文献   

15.
We report the experimental observation of electromagnetically induced transparency (EIT) in a Doppler broadened rubidium vapour at room temperature for different probe intensities at a fixed pump intensity in a five-level Λ-type system formed by the D2 transition of 85Rb. For a constant pump intensity, we find that the EIT width and height change with the variation of probe intensity. We observe a nonlinear variation of the height of the EIT peak and a linear variation of the width (FWHM) of the EIT signal with probe intensity. In the Doppler broadened multilevel system, we also observe the velocity selective dips along with the EIT signal. A numerical simulation of the probe response signal based on density matrix representation in a five-level system is carried out to reproduce the experimentally observed spectra.  相似文献   

16.
We studied effects of the relative phase between the probe and driving fields on the absorption and dispersion properties in an open three-level ladder system with spontaneously generated coherence but without incoherent pumping. It is shown that by the phase controlling, switching from absorption to lasing without inversion (LWI) and enhancing remarkablely LWI gain can be realized; large index of refraction with zero absorption and the electromagnetically induced transparency can be obtained. We also find that varying the atomic injection and exit rates has a considerable influence on the phase dependent-absorption property of the probe field, existent of the atomic injection and exit rates gives the necessary condition of the realization of LWI, getting LWI is impossible in the corresponding closed system without incoherent pumping.  相似文献   

17.
We investigate the entanglement of an open tripartite system where a cavity field mode in thermal equilibrium is off-resonantly coupled with two atoms that are simultaneously driven by a resonant coherent field. For moderately detuned atom-field coupling and strong atomic driving we show the generation, at given interaction times and for low enough cavity decay rates, of atomic Bell states and of Bell state superpositions relevant for quantum gates implementation. The system can oscillate between bi-separable and fully separable states. Also we describe the distribution of quantum correlations between the atom-atom and the two atom-field subsystems. In the dispersive coupling regime with strongly driven atoms we show the generation of nearly stationary Bell states which remain protected from cavity dissipation.  相似文献   

18.
The effects of spontaneously generated coherence (SGC) and phases of optical fields on the phenomenon of electromagnetically induced transparency (EIT) are investigated in a four-level inverted-Y system and in a five-level K-type system under various parametric conditions in order to demonstrate controllability of the EIT, dispersion properties, and group velocity in such systems. Non-zero second-order susceptibility in both systems is due to the SGC effect. The experimental viability of the model in semiconductor quantum well systems is also discussed.  相似文献   

19.
The atomic coherence in a three-level Λ atom is studied, in which each optical transition is driven by a coherent field and the metastable states are coupled to each other via a microwave field. It’s shown that the atomic coherence crucially depends on the relative phase delay between the envelopes of the amplitudes of the three coupling fields. In particular, when the phase delay is adjusted to 0 or π, the maximal atomic coherence arises, while the maximal atomic coherence doesn’t occur once the phase delay is changed to π/2. The maximal atomic coherence is attributed to the trapping of the population in the lower sublevels.  相似文献   

20.
A five-level system to control the wavelength of the in-line amplifier by the quantum interference is proposed. It is found that the gains of the first and the second probe can be adjusted by changing the coherent field and the incoherent pumping. The new scheme may find its application in optical switch and optical communications. Received 9 October 2002 Published online 24 April 2003 RID="a" ID="a"e-mail: qol@mail.jlu.edu.cn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号