首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
用射频磁控溅射以纯金属钒做靶材在氩氧混合气体中制备了钒氧化物 (VO2 (B)、V6O1 3、V2 O5)薄膜。报导了钒氧化物薄膜的拉曼光谱 ,结合这些钒氧化物不同的结构特点 ,对它们的拉曼光谱进行了分类讨论  相似文献   

2.
连续激光辐照下二氧化钒薄膜热致相变实验研究   总被引:6,自引:1,他引:5       下载免费PDF全文
 介绍了VO2薄膜的相变原理,用磁控离子溅射法制备了VO2薄膜,并进行了X射线衍射和不同温度下的光谱透过率测量。在1.319 μm 连续波激光辐照下,实时测量了VO2薄膜的温度变化,以及由于温度变化引起相变后对激光透过率的变化。结果表明,入射到薄膜表面的平均功率为8.9 W、光斑直径2 mm时,激光出光480 ms后,VO2的温度从室温上升到约100 ℃,薄膜发生了相变,其对1.319 μm激光的透过率从相变前的48%降为相变后的28%。  相似文献   

3.
Highly oriented VO2(B), VO2(B) + V6O13 films were grown on indium tin oxide glass by radio-frequency magnetron sputtering. Single phase V6O13 films were obtained from VO2(B) +V6O13 films by annealing at 480℃ in vacuum. The vanadium oxide films were characterized by x-ray diffraction and x-ray photoelectron spectra (XPS). It was found that the formation of vanadium oxide films was affected by substrate temperature and annealing time, because high substrate temperature and annealing were favourable to further oxidation. Therefore, the formation of high valance vanadium oxide films was realized. The V6O13 crystalline sizes become smaller with the increase of annealing time. XPS analysis revealed that the energy position for all the samples was almost constant, but the broadening of the V2p3/2 line of the annealed sample was due to the smaller crystal size of V6O13.  相似文献   

4.
ZnO films doped with different vanadium concentrations are deposited onto glass substrates by dc reactive magnetron sputtering using a zinc target doped with vanadium. The vanadium concentrations are examined by energy dispersive spectroscopy (EDS) and the charge state of vanadium in ZnO thin films is characterized by x-ray photoelectron spectroscopy. The results of x-ray diffraction (XRD) show that all the films have a wurtzite structure and grow mainly in the c-axis orientation. The grain size and residual stress in the deposited films are estimated by fitting the XRD results. The optical properties of the films are studied by measuring the transmittance. The optical constants (refractive index and extinction coefficient) and the film thickness are obtained by fitting the transmittance. All the results are discussed in relation with the doping of the vanadium.  相似文献   

5.
We present what is, to the best of our knowledge, how the components affect the phase transition character of the vanadium oxide thin films. The vanadium oxide thin films are prepared on zinc selenide by a DC magnet sputtering method for the first time; the components are achieved by the x-ray photoelectron spectroscopy (XPS). The films are annealed to tune their components. A spectral transmittance study has been made from 2.5 to 25.0 μm. We can see that, except for doping, different components can change the phase transition characters of the films. The components can affect the phase transition temperature, hysteresis cycle, and the transmittance.  相似文献   

6.
In this letter, a novel optical switch based on vanadium dioxide (VO2) thin film on substrates of silicon (100) has been fabricated. The vanadium dioxide thin films were deposited by reactive ion beam sputtering followed by a post-annealing. The testing result shows the insertion loss of the optical switches is about 1–2 dB, and the extinction ratio is up to 26 dB. The speed of the switches is as fast as 60 ns.  相似文献   

7.
H Mahmodi  M R Hashim 《中国物理 B》2017,26(5):56801-056801
In this study, Ge_(1-x)Sn_x alloy films are co-sputtered on Si(100) substrates using RF magnetron sputtering at different substrate temperatures. Scanning electron micrographs, atomic force microscopy(AFM), Raman spectroscopy, and x-ray photoemission spectroscopy(XPS) are conducted to investigate the effect of substrate temperature on the structural and optical properties of grown Ge Sn alloy films. AFM results show that RMS surface roughness of the films increases from 1.02 to 2.30 nm when raising the substrate temperature. This increase could be due to Sn surface segregation that occurs when raising the substrate temperature. Raman spectra exhibits the lowest FWHM value and highest phonon intensity for a film sputtered at 140?C. The spectra show that decreasing the deposition temperature to 140?C improves the crystalline quality of the alloy films and increases nanocrystalline phase formation. The results of Raman spectra and XPS confirm Ge–Sn bond formation. The optoelectronic characteristics of fabricated metal-semiconductor-metal photodetectors on sputtered samples at room temperature(RT) and 140?C are studied in the dark and under illumination. The sample sputtered at 140?C performs better than the RT sputtered sample.  相似文献   

8.
The influence of hydrogenation on electrical conductivity of vanadium dioxide thin films has been investigated. It has been shown using measurements of the electrical conductivity that the hydrogenation of vanadium dioxide thin films leads to a decrease in the temperature of the phase transition from the tetragonal phase (with “metallic” conductivity) to the semiconducting monoclinic phase. It has been found that, upon doping of vanadium dioxide with hydrogen, the electrical conductivity of the monoclinic phase can increase by several orders of magnitude. Nonetheless, the temperature dependence of the electrical conductivity of hydrogenated films exhibits a typical semiconducting behavior in the temperature range where the monoclinic phase is stable.  相似文献   

9.
《Current Applied Physics》2010,10(2):508-512
In the present study, vanadium dioxide films were grown on quartz glass substrate by reactive KrF laser ablation technique using a vanadium dioxide target. The gold films of various thicknesses were then deposited on the VO2 film by sputtering technique. Films were characterized by X-ray diffraction to determine crystallography, by four-point probe to determine the electrical property and by double-beam spectrophotometry to determine optical reflection and transmission behaviour in the 200–2500 nm spectral region. The resistance per square of VO2 thin film decreases by two orders of magnitude across the metal insulator transition (MIT). The optical transmittance and reflectance exhibits, strong temperature dependence in the infrared region without a significant change in the visible region for VO2 thin films. The presence of gold layer on VO2 films significantly reduces the resistance per square, the critical temperature and percentage transmittance of the materials.  相似文献   

10.
用射频溅射(RF Sputtering)法制成了SiO_2和SiO_2/Al/SiO_2薄膜。应用喇曼光谱研究了薄膜结构。结果表明:RF溅射制成的SiO_2薄膜是含有大量环结构缺陷的玻璃态;SiO_2/Al/SiO_2层状薄膜的喇曼光谱中观察到Al_2O_3的特征峰,证实了Al/SiO_2薄膜界面确有氧化还原反应发生;从喇曼光谱中Al_2O_3的特性峰的位置和相对强度可推断出,SiO_2/Al/SiO_2薄膜界面处的Al_2O_3是非晶γ-Al_2O_3。  相似文献   

11.
Pt-doped titanium dioxide or titania (TiO2) films were grown by rf magnetron sputtering and then annealed in the conventional thermal annealing (CTA) process. Raman spectroscopy was used to characterize the structure of the films deposited. The effect of sputtering parameters was studied in focus of the nucleation sites energies (influenced by the substrate temperature) and substrate bombardment energies (influenced by the sputtering pressure or rf power). The X-ray diffractions technique was used to investigate the structural variation after the films were annealed at different temperatures. It was found that 0.75% Pt-doped TiO2 film exhibits better thermal stability and smaller grain sizes than 0.35% Pt-doped TiO2 film, suggesting that the suppression of crystallization can be expected with a proper increase of Pt doping level. And the obtained optical transparency higher than 80% even after annealing has demonstrated the films’ prospect for future developments.  相似文献   

12.
Polycrystalline silicon (poly-Si) thin-film is fabricated on Al-coated planar glass substrates at the temperature below 100°C, using aluminium-induced crystallized (AIC) amorphous silicon (a-Si) deposited by dc-magnetron sputtering under an electric field. The properties of NA poly-Si films (AIC of dc-magnetron sputtered silicon non-annealing) are characterized by Raman spectroscopy and x-ray diffraction (XRD) spectroscopy. A narrow and symmetrical Raman peak at a wave number of about 521cm-1 is observed for samples, showing that the films are fully crystallized. XRD spectra reveal that the films are preferentially (111) oriented. Furthermore, the XRD spectrum of the sample prepared without electric field does not show any XRD peaks for poly-Si, which only appears at about 38°for Al (111) orientation. It is indicated that the electric field plays an important role in crystallization of poly-Si during the dc-magnetron sputtering. Thus, high quality poly-Si film can be obtained at low temperature and separate post-deposition step of AIC of a-silicon can be avoided.  相似文献   

13.
V02-based thin film materials on silicon substrates are fabricated by ion beam sputtering and a post-annealing which is different from the conventional fabricating method. An infrared linear microbolometer array with 128 pixels is prepared using as-deposited vanadium dioxide thin films. Optical and electrical properties for V02-based microbolometer array are tested.  相似文献   

14.
采用双离子束溅射氧化钒薄膜附加热处理的方式制备了纳米二氧化钒薄膜。在热驱动方式下,分别利用四探针测试技术和傅里叶变换红外光谱技术对纳米二氧化钒薄膜的电学与光学半导体-金属相变特性进行了测试与分析。实验结果表明,电学相变特性与光学相变特性之间存在明显的偏差,电学相变温度为63 ℃,高于光学相变温度,60 ℃;电学相变持续的温度宽度较光学相变持续温度宽度宽;在红外光波段,随着波长的增加,纳米二氧化钒薄膜的光学相变温度逐渐增大,由半导体相向金属相转变的初始温度逐渐升高,相变持续的温度宽度变窄。在红外光波段,纳米二氧化钒薄膜的光学相变特性可以通过光波波长进行调控,电学相变特性更适合表征纳米VO2薄膜的半导体-金属相变特性。  相似文献   

15.
基于硅量子点(Si-QDs)的全硅叠层太阳电池被认为是最有潜质的高效太阳电池之一。目前所报道的硅量子点薄膜存在硅量子点数密度低、缺陷多等问题,限制了硅量子点太阳电池的光电转换效率。微波退火(microwave annealing, MWA)被认为是一种有益于制备纳米结构材料的方法。微波退火的非热效应可以降低形核能,改善薄膜的微结构和光电性能。因此,采用磁控共溅射技术并结合微波退火工艺,在不同的脉冲功率下制备了含硅量子点SiCx薄膜;采用掠入射X射线衍射(GIXRD)、拉曼(Raman)光谱、紫外-可见-近红外分光光度计和光致发光(PL)光谱表征薄膜的物相结构及光谱特性;研究不同脉冲功率对硅量子点数密度和性能的影响,进而改进磁控共溅射工艺,制备硅量子点数密度较高和性能良好的薄膜。样品的GIXRD谱和Raman谱均显示其中存在硅量子点,其强度先增大后减小;通过谢乐(Scherrer)公式估算出硅量子点尺寸呈现先增大后减小的规律,脉冲功率为80 W时尺寸达到最大(8.0 nm)。在Raman光谱中还观察到中心位于511 cm-1处出现硅量子点Si-Si横向光学振动模式的拉曼峰,其强度也呈现先增大后减小的趋势;对拉曼光谱做最佳高斯(Gauss)分峰拟合,得出薄膜的晶化率均高于62.58%,脉冲功率为80 W时制备的薄膜具有最高的晶化率(79.29%)。上述分析表明薄膜中均有硅量子点的形成,且数量先增加后减小,脉冲功率为80 W时硅量子点数量最多。通过测量样品的透射率T、反射率R等光学参数,利用Tauc公式估算出薄膜的光学带隙,发现带隙值随溅射功率的增加先减小后增大,在脉冲功率为80 W时最小(1.72 eV)。硅量子点尺寸与光学带隙成反比,说明薄膜中的硅量子点具有良好的量子尺寸效应。通过PL光谱分析样品的发光特性,对其做最佳高斯拟合,发现样品中均有6个发光峰。结合Raman光谱的分析结果,可以得出波长位于463~624 nm的发光峰源于硅量子点的作用;而波长位于408和430 nm的发光峰则源于薄膜内部的缺陷态,峰位没有偏移,但强度有变化。根据发光峰对应的波长可计算其能带分布,从而确定缺陷态类型:408 nm的发光峰归因于≡Si°→Ev电子辐射跃迁,430 nm的发光峰则归因于≡Si°→≡Si-Si≡的缺陷态发光。还研究了硅量子点的尺寸对发光峰移动的影响。结果表明,随硅量子点尺寸变小(大),发光峰蓝移(红移)。综上,溅射功率为80 W时制备的含硅量子点SiCx薄膜性能最佳。研究结果为硅量子点太阳电池的后续研究奠定了基础。  相似文献   

16.
In this paper an original numerical model,based on the standard Berg model,is used to simulate the growth mechanism of Ti-doped VOx deposited with changing oxygen flow during reactive sputtering deposition.Ti-doped VOx thin films are deposited using a V target with Ti inserts.The effects of titanium inserts on the discharge voltage,deposition rate,and the ratio of V/Ti are investigated.By doping titanium in the vanadium target,the average sputtering yield decreases.In this case,the sputter erosion reduces,which is accompanied by a reduction in the deposition rate.The ratio between V content and Ti content in the film is measured using energy-dispersive x-ray spectroscopy(EDX).A decrease in the vanadium concentration with the increasing of the oxygen flow rate is detected using EDX.Results show a reasonable agreement between numerical and experimental data.  相似文献   

17.
Cerium dioxide thin film optical waveguides were fabricated by an RF magnetron sputtering process. The films were deposited on glass substrates and on silicon dioxide layers grown on silicon substrates. Optical loss measurements for the fabricated waveguides are reported. It is seen that the volume losses in the films were fairly high compared with the surface losses.  相似文献   

18.
《Current Applied Physics》2018,18(6):652-657
The insulator-metal transition (IMT) in vanadium dioxide (VO2) which occurs above room temperature (67 °C) is highly sensitive to atomic defects caused by oxygen stoichiometry. The strained growth and the degree of oxygen deficiency in VO2 epitaxial films result in lowering of transition temperature below room temperature as well as the broadening of transition parameters such as transition width and hysteresis width, which limit its application potential. Here we demonstrate the growth of highly oriented strain-relaxed VO2 thin films on (001)-oriented TiO2 substrates at various oxygen partial pressures, exhibiting the narrow transition and hysteresis width. The cross-sectional transmission electron microscopy and x-ray diffraction analyses of the films reveal the highly oriented growth of insulating monoclinic VO2. The IMT parameters associated with temperature-dependent phase transition vary with the oxygen partial pressure used during the deposition. The presence of multiple and mixed valence states of vanadium in the films was confirmed by Raman and XPS analyses. We have achieved a narrow transition width (2.3 °C) and hysteresis width (1.2 °C) through controlling the oxygen stoichiometry during the growth of VO2/TiO2 films.  相似文献   

19.
Electron-beam deposition of vanadium dioxide thin films   总被引:1,自引:0,他引:1  
Developing a reliable and efficient fabrication method for phase-transition thin-film technology is critical for electronic and photonic applications. We demonstrate a novel method for fabricating polycrystalline, switchable vanadium dioxide thin films on glass and silicon substrates and show that the optical switching contrast is not strongly affected by post-processing annealing times. The method relies on electron-beam evaporation of a nominally stoichiometric powder, followed by fast annealing. As a result of the short annealing procedure we demonstrate that films deposited on silicon substrates appear to be smoother, in comparison to pulsed laser deposition and sputtering. However, optical performance of e-beam evaporated film on silicon is affected by annealing time, in contrast to glass.  相似文献   

20.
Etching of thin polycrystalline films of vanadium dioxide with hydrofluoric acid vapor has offered a possibility to reveal a significant influence of the extent of adhesion on the temperature position and shape of the hysteresis loop of the reflectivity. It has been established that, in the cases where silicon is used as a substrate, etching at room temperature is accompanied by incorporation of hydrogen into thin films of vanadium dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号