首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nanoscale morphology and photoactivity of conjugated polyelectrolytes (CPEs) deposited from different solvents onto single crystal TiO(2) were investigated with atomic force microscopy (AFM) and photocurrent spectroscopy. CPE surface coverages on TiO(2) could be incremenentally increased by adsorbing the CPEs from static solutions. The solvents used for polymer adsorption influenced the surface morpohology of the CPEs on the TiO(2) surface. Photocurrent spectroscopy measurements in aqueous electrolytes, using iodide as a hole scavenger, revealed that the magnitude of the sensitized photocurrents was related to the surface coverages and the degree of aggregation of the CPEs as determined by AFM imaging. Absorbed photon-to-current efficiencies approaching 50% were measured for CPE layers as thick as 4 nm on TiO(2). These results suggest that precise control of CPE morphology at the TiO(2) interface can be achieved through optimization of the deposition conditions to improve the power conversion efficiencies of polymer-sensitized solar cells.  相似文献   

2.
The possibility of controlling the photocatalytic activity of TiO2 nanoparticles by tailoring their crystalline structure and morphology is a current topic of great interest. In this study, a broad variety of well-faceted particles with different phase compositions, sizes, and shapes have been obtained from concentrated TiOCl2 solutions by systematically changing temperature, pH, and duration of the hydrothermal treatment. The guide to select the suitable experimental conditions was provided by thermodynamic modeling based on available thermochemical data. By combining the results of TEM, HRTEM, XRD, density, and specific surface area measurements, a complete structural and morphological characterization of the particles was performed. Correlation between the photocatalytic activity in the UV photodegradation of phenol solutions and the particle size was established. Prismatic rutile particles with length/width ratio around 5 and breadth of 60-100 nm showed the highest activity. The surface chemistry of the particles was also investigated. Treatments that decrease the surface acidity, such as washing the powders with ammonia solution and/or calcining at 400 degrees C, have detrimental effect on photocatalytic activity. The overall results suggest correlation between particle morphology and photocatalytic activity and indicate that both electron-hole recombination and adsorption at the surface can be rate-controlling processes. The systematic approach presented in this study demonstrates that a substantial improvement of the photocatalytic activity of TiO2 can be achieved by a careful design of the particle morphology and the control of the surface chemistry.  相似文献   

3.
The interaction of organic molecules with titanium dioxide surfaces has been the subject of many studies over the last few decades. Numerous surface science techniques have been utilised to understand the often complex nature of these systems. The reasons for studying these systems are hugely diverse given that titanium dioxide has many technological and medical applications. Although surface science experiments investigating the adsorption of organic molecules on titanium dioxide surfaces is not a new area of research, the field continues to change and evolve as new potential applications are discovered and new techniques to study the systems are developed. This tutorial review aims to update previous reviews on the subject. It describes experimental and theoretical work on the adsorption of carboxylic acids, dye molecules, amino acids, alcohols, catechols and nitrogen containing compounds on single crystal TiO(2) surfaces.  相似文献   

4.
5.
6.
Ultrathin TiO2 films showing rich morphologies are prepared on Si(100) substrates using sol-gel chemistry coupled with an amphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer as a structure-directing agent. The block copolymer undergoes a good-poor solvent pair induced phase separation in a mixed solution of 1,4-dioxane, concentrated hydrochloric acid (HCl), and titanium tetraisopropoxide (TTIP). By adjusting the weight fractions of 1,4-dioxane, HCl, and TTIP, inorganic block copolymer composite films containing a variety of different morphologies are obtained. On the basis of the results a ternary phase diagram of the morphologies is mapped. By calcination, anatase TiO2 films are achieved. The morphologies and crystallographic phase of the films are studied with AFM, SEM, and XRD, respectively, and the formation mechanisms of the different morphologies are discussed.  相似文献   

7.
The morphological manipulation and structural characterisation of TiO2?CMgO binary system by an aqueous particulate sol?Cgel route were reported. Different crystal structures including pure MgTiO3, mixtures of MgTiO3 and TiO2 and mixtures of MgTiO3 and Mg2TiO4 were tailored by controlling Mg:Ti molar ratio and annealing temperatures as the processing parameters. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that all compounds crystallised at the low temperature of 500?°C. Furthermore, it was found that the average crystallite size of the compounds depends upon the Mg:Ti molar ratio as well as the annealing temperature, being in the range 3?C5?nm at 500?°C and around 6?nm at 700?°C. Field emission scanning electron microscope (FE-SEM) analysis revealed that the deposited thin films had nanocrystalline structure with the average grain size of 25?C30?nm at 500?°C depending upon the Mg:Ti molar ratio. Moreover, atomic force microscope (AFM) images presented that the thin films had a hill-valley like morphology made up of small grains.  相似文献   

8.
A facile development of highly efficient Pt-TiO(2) nanostructured films via versatile gas-phase deposition methods is described. The films have a unique one-dimensional (1D) structure of TiO(2) single crystals coated with ultrafine Pt nanoparticles (NPs, 0.5-2 nm) and exhibit extremely high CO(2) photoreduction efficiency with selective formation of methane (the maximum CH(4) yield of 1361 μmol/g-cat/h). The fast electron-transfer rate in TiO(2) single crystals and the efficient electron-hole separation by the Pt NPs were the main reasons attributable for the enhancement, where the size of the Pt NPs and the unique 1D structure of TiO(2) single crystals played an important role.  相似文献   

9.
Single crystal of oxovanadium(IV) (2-hydroxybenzylideneamino) acetate was synthesized by template method in aqueous phase using microwaves as the source of energy. A fine crystalline complex was obtained in high yield within a few minutes. All bond distances and angles were observed to study the effect of bonding of vanadium and distortion from normal. Other spectroscopic data are also reported.  相似文献   

10.
Zhong Z  Chen F  Ang TP  Han Y  Lim W  Gedanken A 《Inorganic chemistry》2006,45(12):4619-4625
Titanium dioxide was synthesized by the hydrolysis of titanium tetraisopropoxide (TTIP) in the presence of acetic acid, 2-propanol, and organic amines (octylamine, aniline, and isobutylamine). H2O was supplied by an esterification reaction between acetic acid and 2-propanol (denoted as H2Oe), and/or by intentionally adding it (denoted as H2Oa). It was found that the quantity of H2Oa plays a crucial role in the morphology and porous structure of the final TiO2 product. Without the addition of H2Oa, 1D and porous TiO2 was synthesized. With the addition of H2Oa, and when the H2Oa:TiO2 molar ratio was in the range of 1:1 to 60:1, macroporous TiO2 microspheres possessing a large surface area and high thermal stability were obtained. When the H2Oa:TiO2 molar ratio exceeded 60:1, porous TiO2 with an irregular shape was formed. The variation in the morphology and porous structure is attributed to the manipulation of the growth kinetics by the addition of water.  相似文献   

11.
Au-TiO(2) interface on silica support was aimed to be produced in a controlled way by use of Au hydrosol. In method A, the Au colloids were modified by hydrolysis of the water-soluble Ti(IV) bis(ammoniumlactato)dihydroxide (TALH) precursor and then adsorbed on Aerosil SiO(2) surface. In method B, Au sol was first deposited onto the SiO(2) surface and then TALH was adsorbed on it. Regular and high-resolution transmission electron microscopy (TEM and HRTEM) and energy dispersive spectrometry (EDS) analysis allowed us to conclude that, in method A, gold particles were able to retain the precursor of TiO(2) at 1.5 wt % TiO(2) loading, but at 4 wt % TiO(2) content the promoter oxide appeared over the silica surface as well. With method B, titania was detected on silica at each TiO(2) concentration. In Au-TiO(2)/SiO(2) samples, the stability of Au particles against sintering was much higher than in Au/TiO(2). The formation of an active Au-TiO(2) perimeter was proven by the greatly increased CO oxidation activity compared to that of the reference Au/SiO(2).  相似文献   

12.
近年来 ,二茂铁金属有机液晶材料因其特异的液晶性能和较高的应用价值 ,引起了人们广泛的研究兴趣 ,得到了迅速的发展 ,使该类液晶材料的种类不断增加[1~ 4] 。本文报道的二茂铁衍生物是一个含有苯基、酯基和Schiffs的金属有机化合物 ,是一种潜在的金属有机液晶材料 ,其合成路线如下 :1 实验1 1 仪器与试剂仪器 :显微熔点测定仪。核磁共振仪为RraKerAVANCE - 30 0G型 ,TMS作为内标。红外光谱仪为Perkin Elmer1 730型 ,KBr压片。单晶测定仪为SiemensP4型衍射仪。试剂均为国产化学纯。1 2…  相似文献   

13.
TiO2 is a material of great interest for many technological applications among which, as catalyst support. As this specific application requires a good thermal stability of the material, the phase transition between the two most commonly used titania polymorphs, anatase and rutile, has been extensively studied over the past decade. However not much importance has been given to the initial and final particles morphologies. In this study, anatase nanoparticles with an elongated shape were synthesized and their kinetic phase transformation was studied. The thermal treatments were conducted at temperatures ranging from 500 to 700 °C. The morphology evolution and the phase transition were characterized by X-ray diffraction and transmission electron microscopy. The phase transformation kinetics is best described by the interface nucleation models. The values of the measured kinetic parameters are significantly lower than those proposed in the literature for isotropic particles, with an activation energy of Ea = 345 kJ mol?1. The influence of morphology and, as a consequence, the influence of exposed faces on anatase particles, are presented and discussed.  相似文献   

14.
A substrate-free, large-scale, free-standing and two-side oriented single crystal rutile TiO(2) nanorod array film with a thickness of over ten micrometers, self-assembled via a facile hydrothermal reaction of titanium powder in a mixture solution of H(2)O(2) and HCl, exhibits high activity for the photocatalytic degradation of methyl orange.  相似文献   

15.
Two series of nitrogen doped TiO(2) samples with different ratios of anatase to rutile phases were prepared by milling the mixture of P25 TiO(2) and C(6)H(12)N(4) in air and gaseous NH(3) atmosphere, respectively. Compared to air, NH(3) atmosphere plays an important role in delaying the crystallite transformation from anatase to rutile in the mechanochemical reaction of TiO(2) and C(6)H(12)N(4). In contrast to the previously reported results for pure TiO(2), it is found that nitrogen doped TiO(2) with higher content of rutile phase demonstrates higher photocatalytic activity in photodegrading pollutant Rhodamine B under both UV light and visible light irradiation (lambda>420 nm), and the amount of the surface-adsorbed water and hydroxyl groups on nitrogen doped TiO(2) have little correlations with their crystallite phases (anatase or rutile) and photocatalytic activity. The more abundant surface states characterized by photoluminescence spectroscopy together with the lowered valence band maximum of rutile TiO(2) by nitrogen doping are considered as the key factors for the higher activity of nitrogen doped TiO(2) with higher content of rutile phase.  相似文献   

16.
Density functional theory (DFT) calculations have been used to investigate acetylene cyclotrimerization catalyzed by titanium and vanadium dioxides. The calculated results illustrate that the overall process is highly favorable at room temperature from both thermodynamic and kinetic points of view. The mechanism of C2H2 cyclotrimerization over MO2 (M = Ti, V) can be understood as four steps: (1) a four-membered ring (-O-M-C=C-) formation that coordinates and activates the first C2H2 molecule; (2) the second C2H2 insertion into the M-C bond to form a six-membered ring (-O-M-C=C-C=C-); (3) the third C2H2 insertion into the M-C bond to form an eight-membered ring (-O-M-C=C-C=C-C=C-); and (4) contraction of the eight-membered ring and benzene formation and desorption. All of the reaction steps are overall barrierless with respect to the separated reactants (MO2C2xH2x + C2H2, x = 0, 1, 2). This theoretical study predicts that the M=O double bond in MO2 is very catalytic toward the C2H2 cyclotrimerization. The metal center in this study can be considered always in the same +4 oxidation state (Ti4+ and V4+). In contrast, two-electron cycling of the metal center is present in the documented mechanism for the C2H2 cyclotrimerization. The C2H2 cyclotrimerization over the Ti atom and TiO molecule is also studied, and the documented mechanism applies in this case. The new mechanism is suggested to apply to reactions using titanium and vanadium oxides as catalysts.  相似文献   

17.
Nanoscale anatase TiO2 single crystals were successfully synthesized using three kinds of activated carbon (AC) templates through a simple sol–gel method. The optimal photocatalyst (T‐WOAC) was obtained using wood‐based AC template. X‐ray diffraction, transmission electron microscopy and Brunauer–Emmett–Teller analyses revealed that T‐WOAC possessed a small crystallite size of 8.7 nm and a clear mesoporous structure. The photocatalytic properties of samples were then evaluated through photodegradation of crystal violet (CV). Results implied that the photocatalysts prepared using the AC templates exhibited superior photocatalytic activity to that of the original TiO2. This enhancement may be due to the small crystallite size, large specific surface area and pore volume of the catalysts prepared with ACs. T‐WOAC showed high photocatalytic activity, CV degradation of 99.01% after 120 min of irradiation and k = 0.03914 min?1, which is 3.9 times higher than that of the original TiO2 (k = 0.00994 min?1). This result can be mainly attributed to the application of WOAC with moderate specific surface area and pore volume to produce T‐WOAC. Alkaline conditions benefitted the photodegradation of CV over photocatalysts. This work proposes a possible degradation mechanism of CV and indicates that the fabricated photocatalysts can be used to effectively remove CV from aqueous solutions.  相似文献   

18.
19.
20.
Polyhedral gold nanoparticles below 100 nm in size were fabricated by continuously delivered HAuCl(4) and PVP starting solutions into l-ascorbic acid aqueous solution in the presence of gold seeds, and under addition of sodium hydroxide (NaOH). By continuously delivered PVP and HAuCl(4) starting solutions in the presence of gold seed, the size and shape of polyhedral gold were achieved in relatively good uniformity (particle size distribution=65-95 nm). Morphological evolution was also attempted using different growth rates of crystal facets with increasing reaction temperature, and selective adsorption of PVP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号