首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The size-specific influence of alkali metal ions in the gradual transition from cluster rearrangement to solvation dynamics is investigated by means of molecular dynamics simulations for alkali metal cation-hexafluorobenzene systems, M(+)-C(6)F(6) (M = Na, K, Rb and Cs), surrounded by Ar atoms. To analyze such transition, different small aggregates of the M(+)-C(6)F(6)-Ar(n) (n = 1, ..., 30) type and M(+)-C(6)F(6) clusters solvated by about 500 Ar atoms are considered. The Ar-C(6)F(6) interaction contribution has been described using two different formalisms, based on the interaction decomposition in atom-bond and in atom-effective atom terms, which have been applied to study the small aggregates and to investigate the Ar solvated M(+)-C(6)F(6) clusters, respectively. The selectivity of the promoted phenomena from the M(+) ion size and their dependence from the number of Ar atoms is characterized.  相似文献   

2.
The intermolecular potentials for hexafluorobenzene (HFBz) and 1,3,5-trifluorobenzene (TFBz) interacting with alkali (M(+); M = Li, Na, K, Rb, Cs) and halogen (X(-); X = F, Cl, Br, I) ions are provided as a combination of electrostatic and nonelectrostatic terms. The ion-HFBz and ion-TFBz electrostatic components are formulated as a sum of Coulombic potentials associated with the interactions between the ion charge and point charges on the molecular frame, whose distributions are consistent with the permanent quadrupole moment of HFBz and TFBz, respectively. The corresponding nonelectrostatic components are represented as a sum of effective potential functions, each one having a specific physical meaning, related to ion-molecular bond pair interactions. In the present paper, we test the transferability of the ion-bond potential parameters. Moreover, the powerfulness of the model is analyzed by comparing predicted binding energies and equilibrium geometries for the family of M(+)-HFBz, X(-)-HFBz, M(+)-TFBz, and X(-)-TFBz systems with available ab initio results.  相似文献   

3.
4.
The gradual evolution from cluster rearrangement to solvation dynamics is discussed by considering the rearrangement of n (n = 1, ..., 19) Ar atoms around Na+-benzene clusters and using an atom-bond potential energy surface. The nature of the bonding is discussed on the basis of the decomposition of the interaction energy and of the formation of the possible conformers. The benzene molecule is found to remain strongly bound to Na+ independently of the number of solvating rare-gas atoms, although due to the anisotropy of the interaction potential, the Ar atoms solvate the Na+-benzene cluster preferentially on the side of the cation. Other specific features of the solvation process are discussed.  相似文献   

5.
Infrared photodissociation (IRPD) spectra of mass-selected clusters composed of protonated aniline (C6H8N+ = AnH+) and a variable number of neutral ligands (L = Ar, N2) are obtained in the N-H stretch range. The AnH+ -Ln complexes (n < or = 3) are produced by chemical ionization in a supersonic expansion of An, H2, and L. The IRPD spectra of AnH+-Ln feature the unambiguous fingerprints of at least two different AnH+ nucleation centers, namely, the ammonium isomer (5) and the carbenium ions (1 and/or 3) corresponding to protonation at the N atom and at the C atoms in the para and/or ortho positions, respectively. Protonation at the meta and ipso positions is not observed. Both classes of observed AnH+-Ln isomers exhibit very different photofragmentation behavior upon vibrational excitation arising from the different interaction strengths of the AnH+ cores with the surrounding neutral ligands. Analysis of the incremental N-H stretch frequency shifts as a function of cluster size shows that microsolvation of both 5 and 1/3 in Ar and N2 starts with the formation of intermolecular H bonds of the ligands to the acidic NH protons and proceeds by intermolecular pi bonding to the aromatic ring. The analysis of both the photofragmentation branching ratios and the N-H stretch frequencies demonstrates that the N-H bonds in 5 are weaker and more acidic than those in 1/3, leading to stronger intermolecular H bonds with L. The interpretation of the spectroscopic data is supported by density functional calculations conducted at the B3LYP level using the 6-31G* and 6-311G(2df,2pd) basis sets. Comparison with clusters of neutral aniline and the aniline radical cation demonstrates the drastic effect of protonation and ionization on the acidity of the N-H bonds and the topology of the intermolecular potential, in particular on the preferred aromatic substrate-nonpolar ligand recognition motif.  相似文献   

6.
The size-specific influence of the M+ alkali ion (M = Li, Na, K, Rb, and Cs) in the solvation process of the M+-benzene clusters by Ar atoms is investigated by means of molecular dynamic simulations. To fully understand the behavior observed in M+-bz-Ar(n) clusters, solvation is also studied in clusters containing either M+ or benzene only. The potential energy surfaces employed are based on a semiempirical bond-atom decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions, studying the evolution of the distances between the Ar atoms and the alkali ion M+ or the benzene molecule for all M+-bz-Ar(n) clusters. For all members, in the M+-bz series, the benzene molecule (bz) is found to remain strongly bound to M+ even in the presence of solvent atoms. The radial distribution functions for the heavier clusters (K+-bz, Rb+-bz, and Cs+-bz), are found to be different than for the lighter (Na+-bz and Li+-bz) ones.  相似文献   

7.
Molecular dynamics simulation of solid solutions of He and Ar inice II at T 200 K has shown that amplitudes of water moleculeoscillations diminish when noble gas atoms fill the cavities ofthe hydrogen-bonded framework. The effect of Ar atoms ismore pronounced. Slow diffusion of He along trigonal axis isobserved when not all the cavities are filled. He and Ar atomsexert little effect on frequencies of translational and librationalvibrations of the water molecules. Type II empty gas hydrateframework (CSII) is quite stable at T 200 K. Amplitudes ofoscillations of water molecules which occupy differentcrystallographic positions are different. Filling of the cavitiesin the CSII framework with Ar atoms causes diminutionof the amplitudes of water molecule vibrations, and differencebetween amplitudes of vibration of molecules occupyingdifferent positions becomes less pronounced. Large cavities inthe CSII framework can accommodate two Ar atoms withoutdistortion. No diffusion of guest Ar atoms was observed at 200 Kin CSII framework.  相似文献   

8.
Infrared photodissociation (IRPD) spectra of clusters composed of protonated phenol (C(6)H(7)O(+)) and several ligands L are recorded in the O-H and C-H stretch ranges using a tandem mass spectrometer coupled to a cluster ion source. The C(6)H(7)O(+)-L(n) complexes (L=Ar/N(2), n=1-6) are generated by chemical ionization of a supersonic expansion. The IRPD spectra of mass selected C(6)H(7)O(+)-L(n) clusters obtained in various C(6)H(7)O(+)-L(m) fragment channels (m相似文献   

9.
The dynamics and thermodynamics of small Ar(n) (+) clusters, n=3, 6, and 9, are investigated using molecular dynamics (MD) and exchange Monte Carlo (MC) simulations. A diatomic-in-molecule Hamiltonian provides an accurate model for the electronic ground state potential energy surface. The microcanonical caloric curves calculated from MD and MC methods are shown to agree with each other, provided that the rigorous conservation of angular momentum is accounted for in the phase space density of the MC simulations. The previously proposed projective partition of the kinetic energy is used to assist MD simulations in interpreting the cluster dynamics in terms of inertial, internal, and external modes. The thermal behavior is correlated with the nature of the charged core in the cluster by computing a dedicated charge localization order parameter. We also perform systematic quenches to establish a connection with the various isomers. We find that the Ar(3) (+) cluster is very stable in its linear ground state geometry up to about 300 K, and then isomerizes to a T-shaped isomer in which a quasineutral atom lies around a charged dimer. In Ar(6) (+) and Ar(9) (+), the covalent trimer core is solvated by neutral atoms, and the weakly bound solvent shell melts at much lower energies, occasionally leading to a tetramer or pentamer core with weakly charged extremities. At high energies the core itself becomes metastable and the cluster transforms into Ar(2) (+) solvated by a fluid of neutral argon atoms.  相似文献   

10.
The target of this investigation is to characterize by a recently developed methodology, the main features of the first solvation shells of alkaline ions in nonpolar environments due to aromatic rings, which is of crucial relevance to understand the selectivity of several biochemical phenomena. We employ an evolutionary algorithm to obtain putative global minima of clusters formed with alkali-ions (M(+)) solvated with n benzene (Bz) molecules, i.e., M(+)-(Bz)(n). The global intermolecular interaction has been decomposed in Bz-Bz and in M(+)-Bz contributions, using a potential model based on different decompositions of the molecular polarizability of benzene. Specifically, we have studied the microsolvation of Na(+), K(+), and Cs(+) with benzene molecules. Microsolvation clusters up to n = 21 benzene molecules are involved in this work and the achieved global minimum structures are reported and discussed in detail. We observe that the number of benzene molecules allocated in the first solvation shell increases with the size of the cation, showing three molecules for Na(+) and four for both K(+) and Cs(+). The structure of this solvation shell keeps approximately unchanged as more benzene molecules are added to the cluster, which is independent of the ion. Particularly stable structures, so-called "magic numbers", arise for various nuclearities of the three alkali-ions. Strong "magic numbers" appear at n = 2, 3, and 4 for Na(+), K(+), and Cs(+), respectively. In addition, another set of weaker "magic numbers" (three per alkali-ion) are reported for larger nuclearities.  相似文献   

11.
12.
Structural isomers of isolated protonated phenol (C(6)H(7)O(+)) are characterized by infrared (IR) photodissociation spectroscopy of their weakly bound complexes with neutral ligands L (L = Ne, Ar, N(2)). IR spectra of C(6)H(7)O(+)-L recorded in the vicinity of the O-H and C-H stretch fundamentals carry unambiguous signatures of at least two C(6)H(7)O(+) isomers: the identified protonation sites of phenol include the O atom (oxonium ion, O-C(6)H(7)O(+)) and the C atoms of the aromatic ring in the ortho and/or para position (carbenium ions, o/p-C(6)H(7)O(+)). In contrast, protonation at the meta and ipso positions is not observed. The most stable C(6)H(7)O(+)-L dimer structures feature intermolecular H-bonds between L and the OH groups of O-C(6)H(7)O(+) and o/p-C(6)H(7)O(+). Extrapolation to zero solvation interaction yields reliable experimental vibrational frequencies of bare O-C(6)H(7)O(+) and o/p-C(6)H(7)O(+). The interpretation of the C(6)H(7)O(+)-L spectra, as well as the extrapolated monomer frequencies, is supported by B3LYP and MP2 calculations using the 6-311G(2df,2pd) basis. The spectroscopic and theoretical results elucidate the effect of protonation on the structural properties of phenol and provide a sensitive probe of the activating and ortho/para directing nature of the OH group observed in electrophilic aromatic substitution reactions.  相似文献   

13.
14.
Ab initio (HF, MP2, and CCSD(T)) and DFT (B3LYP) calculations were done in modeling the cation (H(+), Li(+), Na(+), K(+), Ca(2+), Mg(2+), NH(4)(+), and NMe(4)(+)) interaction with aromatic side chain motifs of four amino acids (viz., phenylalanine, tyrosine, tryptophan and histidine). As the metal ion approaches the pi-framework of the model systems, they form strongly bound cation-pi complexes, where the metal ion is symmetrically disposed with respect to all ring atoms. In contrast, proton prefers to bind covalently to one of the ring carbons. The NH(4)(+) and NMe(4)(+) ions have shown N-H...pi interaction and C-H...pi interaction with the aromatic motifs. The interaction energies of N-H...pi and C-H...pi complexes are higher than hydrogen bonding interactions; thus, the orientation of aromatic side chains in protein is effected in the presence of ammonium ions. However, the regioselectivity of metal ion complexation is controlled by the affinity of the site of attack. In the imidazole unit of histidine the ring nitrogen has much higher metal ion (as well as proton) affinity as compared to the pi-face, facilitating the in-plane complexation of the metal ions. The interaction energies increase in the order of 1-M < 2-M < 3-M < 4-M < 5-M for all the metal ion considered. Similarly, the complexation energies with the model systems decrease in the following order: Mg(2+) > Ca(2+) > Li(+) > Na(+) > K(+) congruent with NH(4)(+) > NMe(4)(+). The variation of the bond lengths and the extent of charge transfer upon complexation correlate well with the computed interaction energies.  相似文献   

15.
IR spectra of phenol-Arn (PhOH-Arn) clusters with n=1 and 2 were measured in the neutral and cationic electronic ground states in order to determine the preferential intermolecular ligand binding motifs, hydrogen bonding (hydrophilic interaction) versus pi bonding (hydrophobic interaction). Analysis of the vibrational frequencies of the OH stretching motion, nuOH, observed in nanosecond IR spectra demonstrates that neutral PhOH-Ar and PhOH-Ar2 as well as cationic PhOH+-Ar have a pi-bound structure, in which the Ar atoms bind to the aromatic ring. In contrast, the PhOH+-Ar2 cluster cation is concluded to have a H-bound structure, in which one Ar atom is hydrogen-bonded to the OH group. This pi-->H binding site switching induced by ionization was directly monitored in real time by picosecond time-resolved IR spectroscopy. The pi-bound nuOH band is observed just after the ionization and disappears simultaneously with the appearance of the H-bound nuOH band. The analysis of the picosecond IR spectra demonstrates that (i) the pi-->H site switching is an elementary reaction with a time constant of approximately 7 ps, which is roughly independent of the available internal vibrational energy, (ii) the barrier for the isomerization reaction is rather low(<100 cm(-1)), (iii) both the position and the width of the H-bound nuOH band change with the delay time, and the time evolution of these spectral changes can be rationalized by intracluster vibrational energy redistribution occurring after the site switching. The observation of the ionization-induced switch from pi bonding to H bonding in the PhOH+-Ar2 cation corresponds to the first manifestation of an intermolecular isomerization reaction in a charged aggregate.  相似文献   

16.
The hydration of K(+) is studied using a hierarchy of theoretical approaches, including ab initio Born-Oppenheimer molecular dynamics and Car-Parrinello molecular dynamics, a polarizable force field model based on classical Drude oscillators, and a nonpolarizable fixed-charge potential based on the TIP3P water model. While models based more directly on quantum mechanics offer the possibility to account for complex electronic effects, polarizable and fixed-charges force fields allow for simulations of large systems and the calculation of thermodynamic observables with relatively modest computational costs. A particular emphasis is placed on investigating the sensitivity of the polarizable model to reproduce key aspects of aqueous K(+), such as the coordination structure, the bulk hydration free energy, and the self diffusion of K(+). It is generally found that, while the simple functional form of the polarizable Drude model imposes some restrictions on the range of properties that can simultaneously be fitted, the resulting hydration structure for aqueous K(+) agrees well with experiment and with more sophisticated computational models. A counterintuitive result, seen in Car-Parrinello molecular dynamics and in simulations with the Drude polarizable force field, is that the average induced molecular dipole of the water molecules within the first hydration shell around K(+) is slightly smaller than the corresponding value in the bulk. In final analysis, the perspective of K(+) hydration emerging from the various computational models is broadly consistent with experimental data, though at a finer level there remain a number of issues that should be resolved to further our ability in modeling ion hydration accurately.  相似文献   

17.
Classical trajectory calculations have been performed to investigate the collision-induced dissociation (CID) of the CH(3)SH(+) cation with Ar atoms. A new intramolecular potential energy surface for the CH(3)SH(+) cation is evaluated by interpolation of 3000 ab initio data points calculated at the MP2/6-311G(d,p) level of theory. The new potential energy surface includes seven accessible dissociation channels of the cation. The present QCT calculations show that migration of hydrogen atoms, leading to the rearrangement CH(3)SH(+) <--> CH(2)SH(2)(+), is significant at the collision energies considered (6.5-34.7 eV) and that the formation of CH(3)(+), CH(3)S(+), and CH(2)(+) cations takes place primarily by a "shattering" mechanism in which the products are formed just after the collision. The theoretical product abundances are found to be in qualitative agreement with the experimental data. However, at high collision energies, the calculated total cross sections for the formation of CH(3)(+) and CH(2)SH(+) cations are noticeably larger than the experimental determinations. Several features of the dynamics of the CID processes are discussed.  相似文献   

18.
The intermolecular interaction between the imidazole cation (Im+ = C3N2H4+) and nonpolar ligands is characterized in the ground electronic state by infrared photodissociation (IRPD) spectroscopy of size-selected Im+-Ln complexes (L = Ar, N2) and quantum chemical calculations performed at the UMP2/6-311G(2df,2pd) and UB3LYP/6-311G(2df,2pd) levels of theory. The complexes are created in an electron impact cluster ion source, which predominantly produces the most stable isomers of a given cluster ion. The analysis of the size-dependent frequency shifts of both the N-H and the C-H stretch vibrations and the photofragmentation branching ratios provides valuable information about the stepwise microsolvation of Im+ in a nonpolar hydrophobic environment, including the formation of structural isomers, the competition between various intermolecular binding motifs (H-bonding and pi-bonding) and their interaction energies, and the acidity of both the CH and NH protons. In line with the calculations, the IRPD spectra show that the most stable Im+-L dimers feature planar H-bound equilibrium structures with nearly linear H-bonds of L to the acidic NH group of Im+. Further solvation occurs at the aromatic ring of Im+ via the formation of intermolecular pi-bonds. Comparison with neutral Im-Ar demonstrates the drastic effect of ionization on the topology of the intermolecular potential, in particular in the preferred aromatic substrate-nonpolar recognition motif, which changes from pi-bonding to H-bonding. .  相似文献   

19.
The fragmentation dynamics of argon clusters ionized by electron impact is investigated for initial cluster sizes up to n = 11 atoms. The dynamics of the argon atoms is modeled using a mixed quantum-classical method in which the nuclei are treated classically and the transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model with the addition of the induced dipole-induced dipole and spin-orbit interactions. The results show extensive and fast fragmentation. The dimer is the most abundant ionic fragment, with a proportion increasing from 66% for n = 2 to a maximum of 95% for n = 6 and then decreasing down to 67% for n = 11. The next abundant fragment is the monomer for n < 7 and the trimer otherwise. The parent ion dissociation lifetimes are all in the range of 1 ps. Long-lived trajectories appear for initial cluster sizes of seven and higher, and favor the formation of the larger fragments (trimers and tetramers). Our results show quantitative agreement with available experimental results concerning the extensive character of the fragmentation: Ar+ and Ar2(+) are the only ionic fragments for sizes up to five atoms; their overall proportion is in quantitative agreement for all the studied sizes; Ar2(+) is the main fragment for all sizes; stable Ar3(+) fragments only appear for n > or = 5, and their proportion increases smoothly with cluster size from there. However, the individual ionic monomer and dimer fragment proportions differ. The experimental ones exhibit oscillations with initial cluster size, with a slight tendency to decrease on average for the monomer. In contrast our results show a monotonic, systematic evolution, similar to what was found in our earlier studies on neon and krypton clusters. Several hypotheses are discussed in order to find the origin of this discrepancy. Finally, the metastable II(1/2)u and II(1/2)g states of Ar2(+) are found to decay with a lifetime of 3.5 and 0.1 ps, respectively, due to spin-orbit coupling. The difference with the commonly accepted microsecond range value for rare-gas dimer ions could originate from the role of autoionizing states in the formation of the parent ions.  相似文献   

20.
Chung S  Kim W  Park SB  Kim DY  Lee SS 《Talanta》1997,44(7):1291-1298
Some podands, acyclic polyethers, were utilized as membrane active components to prepare Ag(+)-selective polymeric membrane electrodes. The thiapodand-based electrodes exhibited considerable selectivity toward Ag(+) over other heavy metal ions including Cd(2+), Pb(2+), Cu(2+) and Hg(2+). Also, good selectivity over alkali and alkali earth metal ions were observed. Response slopes, pH effects, response time, and signal baseline return of the sensor systems were studied in static mode and/or in a flow-injection system. The Ag(+)-selectivity was explained by the soft-soft interaction of the Ag(+) ion with the sulfur donor atoms as well as the stacking interaction between aromatic end groups of the host molecule on complexation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号