首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
用种子生长法制备了金@银核壳结构的纳米粒子。在制备过程中通过控制氯金酸的浓度和硝酸银的体积,得到了不同粒径的金核和不同厚度的银壳构成的核壳纳米粒子。从而得到了具有不同SERS性能的金@银核壳纳米粒子。并选取具有最佳SERS性能的金@银核壳纳米粒子实现了对罗丹明6G的微量检测。  相似文献   

2.
We report on the synthesis and spectroscopic characterization of well-defined hybrid structures that consist of a gold core overcoated with a silica shell, followed by a dense monolayer of CdSe nanocrystal quantum dots (QDs). The dielectric silica spacer of a controlled thickness provides a simple means for tuning interactions between the QD emitters and the metal core. To illustrate this tunability, we demonstrate switching between QD emission quenching and enhancement by varying the silica shell thickness. Synthetic procedures developed here employ a final step of self-assembly of QDs onto the silica shell performed via simple titration of the QD solution with prefabricated core/shell Au/SiO2 particles. This approach allows us to perform an accurate quantitative analysis of the effect of the metal on the QD emission intensity. One important result of this analysis is that nonuniformity of nonradiative rates across the QD ensemble has a significant effect on both the magnitude and the shell-thickness dependence of the emission enhancement/quenching factors.  相似文献   

3.
用种子生长法制备了金@银核壳结构的纳米粒子。在制备过程中通过控制氯金酸的浓度和硝酸银的体积,得到了不同粒径的金核和不同厚度的银壳构成的核壳纳米粒子。从而得到了具有不同SERS性能的金@银核壳纳米粒子。选取具有最佳SERS性能的金@银核壳纳米粒子实现了对罗丹明6G的微量检测。  相似文献   

4.
本文以谷胱甘肽(GSH)作为表面活性剂,采用两步法,先生成Ag2S核,再生长CdS,得到了高质量的Ag2S-CdS核壳结构水溶性量子点。我们用XRD,TEM,HRTEM和EDS研究了产物的结构,形貌和组分,用紫外可见吸收光谱和荧光发射光谱研究了所得量子点的光学性质,同时考察了反应时间,GSH的量,Ag和S源前驱物的含量对量子点光学性质的影响。实验结果表明量子点稳定性好,荧光寿命长,可在710~718 nm近红外区域发光。在核生长过程中,Ag和S源的含量同时影响量子点的发光位置和强度,而GSH量和壳层生长中S源的量几乎只影响近红外发光强度,发光位置保持不变。不同的量子点光学性质可能来源于量子点中组分及表面缺陷的分布。  相似文献   

5.
Light-harvesting complex (LHCII) of the photosynthetic apparatus in plants is attached to type-II core-shell CdTe/CdSe/ZnS nanocrystals (quantum dots, QD) exhibiting an absorption band at 710 nm and carrying a dihydrolipoic acid coating for water solubility. LHCII stays functional upon binding to the QD surface and enhances the light utilization of the QDs significantly, similar to its light-harvesting function in photosynthesis. Electronic excitation energy transfer of about 50% efficiency is shown by donor (LHCII) fluorescence quenching as well as sensitized acceptor (QD) emission and corroborated by time-resolved fluorescence measurements. The energy transfer efficiency is commensurable with the expected efficiency calculated according to F?rster theory on the basis of the estimated donor-acceptor separation. Light harvesting is particularly efficient in the red spectral domain where QD absorption is relatively low. Excitation over the entire visible spectrum is further improved by complementing the biological pigments in LHCII with a dye attached to the apoprotein; the dye has been chosen to absorb in the "green gap" of the LHCII absorption spectrum and transfers its excitation energy ultimately to QD. This is the first report of a biological light-harvesting complex serving an inorganic semiconductor nanocrystal. Due to the charge separation between the core and the shell in type-II QDs the presented LHCII-QD hybrid complexes are potentially interesting for sensitized charge-transfer and photovoltaic applications.  相似文献   

6.
Chemical bath deposition synthesis of sub-micron ZnS-coated polystyrene   总被引:1,自引:0,他引:1  
The synthesis of ZnS-coated polystyrene composite colloids by the decomposition of thioacetamide in the presence of polystyrene seed particles and metal salt is presented. The chemical bath deposition technique incorporates poly(vinyl pyrrolidone) to inhibit particle aggregation during the synthesis so that core-shell particles with sizes in the low sub-micron range were achieved. The shell thickness was well controlled through the reaction time and core size. ZnS shells were composed of primary crystallites, approximately 5 nm in diameter, which had the zinc blend crystal structure. The porosity of the shells was between 12 and 19%. Accordingly, the effective refractive index of the particles varied between 1.73 and 1.98 at wavelengths above the optical absorption edge of ZnS. Ordered colloidal crystals were produced by convective assembly of the poly(sodium 4-styrenesulfonate) stabilized core-shell particles. Assemblies of ZnS shell-polystyrene core particles are photonic crystal materials which may have applications in optical computing and communications environments.  相似文献   

7.
The composite nanoparticles of Au-core capped by CdS shells of different thickness were prepared and assembled into densely packed 3-dimensional films by the layer-by-layer self-assembly (LBL) technique. These films exhibited the 3-dimensional structure of densely packed Au@CdS composite nanoparticles and the shell thickness was tunable by changing the concentration of Cd2+-thiourea complexes. These multilayer films exhibited enhanced third-order optical nonlinear responses and ultrafast response times (several picoseconds). The third-order nonlinear optical susceptibility of the film with the CdS shell thickness of 4.4 nm was estimated to be 1.48 x 10(-9) esu and the value decreases with the increase of the CdS shell thickness. The enhancement of the optical nonlinearity was explained based on the calculation according to the electrostatic approximation by the solution of Laplace's equation under the boundary conditions appropriate to the model of core-shell nanoparticles, and mainly attributed to localized electric field effects in the CdS shell region. Additionally, the nonlinearity was optimized by determination of the values of the dielectric constant and thickness of the different shell.  相似文献   

8.
Ultrafast charge‐transfer dynamics has been demonstrated in CdSe quantum dots (QD), CdSe/ZnS type‐I core–shell, and CdSe/CdTe type‐II core–shell nanocrystals after sensitizing the QD materials by aurin tricarboxylic acid (ATC), in which CdSe QD and ATC form a charge‐transfer complex. Energy level diagrams suggest that the conduction and valence band of CdSe lies below the LUMO and the HOMO level of ATC, respectively, thus signifying that the photoexcited hole in CdSe can be transferred to ATC and that photoexcited ATC can inject electrons into CdSe QD, which has been confirmed by steady state and time‐resolved luminescence studies and also by femtosecond time‐resolved absorption measurements. The effect of shell materials (for both type‐I and type‐II) on charge‐transfer processes has been demonstrated. Electron injection in all the systems were measured to be <150 fs. However, the hole transfer time varied from 900 fs to 6 ps depending on the type of materials. The hole‐transfer process was found to be most efficient in CdSe QD. On the other hand, it has been found to be facilitated in CdSe/CdTe type‐II and retarded in CdSe/ZnS type‐I core–shell materials. Interestingly, electron injection from photoexcited ATC to both CdSe/CdTe type‐II and CdSe/ZnS type‐I core–shell has been found to be more efficient as compared to pure CdSe QD. Our observation suggests the potential of quantum dot core–shell super sensitizers for developing more efficient quantum dot solar cells.  相似文献   

9.
采用高温有机相包覆技术制备了CdSe/ZnS核壳结构量子点材料,考察了包覆量对量子点材料的光学性能的影响,研究了含脂肪链和芳香基的双硫醇分子1,4-苯二甲硫醇和1,8-辛二硫醇对于具有核-壳结构的CdSe/ZnS量子点材料的修饰作用,考察了修饰作用对于量子点的量子效率和荧光强度等光学性能的影响.实验结果表明:随着硫化锌包覆量的增加,量子点的量子效率及其荧光发射强度明显提高;硫醇的修饰能显著增强量子点的发光强度,随着硫醇浓度的增加,其发光性能增强,但是达到一定程度后,光学性能基本不随硫醇浓度的变化而变化.根据固体核磁共振等实验结果推测:硫醇分子可能部分替代了量子点体系中的正三辛基氧膦配体,稳定了量子点体系,对量子点起修饰保护作用,从而提高了量子点的光学性能.  相似文献   

10.
We performed the first investigations of coherent acoustic phonons in Au-Ag core-shell nanorods, which were compared with the results of parental Au nanorods. Both breathing and extensional modes were observed in Au-Ag core-shell nanorods with ~11 nm Ag shell while only extensional modes were detected in other core-shell nanorods with 4-7 nm Ag shell. Young's modulus estimated from the oscillation period of extensional modes was found to be larger for Au-Ag core-shell nanorods with ~4 nm Ag shell, as compared with that of Au nanorods. The value of Young's modulus decreases with the increase of the Ag shell thickness and finally becomes smaller than that of Au nanorods. This phenomenon is interpreted in terms of the surface effects and the existence of grain boundaries in the lattice structure of Ag shell.  相似文献   

11.
A novel strategy for the fabrication of multiwall carbon nanotube-nanocrystal heterostructures is shown. Different quantum dots (QDs) with narrow size distributions were covalently coupled to carbon nanotubes (CNTs) and silica-coated CNTs in a simple, uniform, and controllable manner. The structural and optical properties of CNT/QD heterostructures are characterized by electron microscopy and photoluminescence spectroscopy. Complete quenching of the PL bands in both QD core and core/shell heterostructures was observed after adsorption to the CNTs, presumably through either carrier ionization or energy transfer. The deposition of a silica shell around the CNTs preserves the fluorescence properties by insulating the QD from the surface of the CNT.  相似文献   

12.
The present study describes a stabilization of single quantum dot (QD) micelles by hydrophobic silica precursors and an extension of the silica layer to form a silica shell around the micelle. The obtained product consists of up to 92% of single nanocrystals (CdSe, CdSe/ZnS, or CdSe/ZnSe/ZnS quantum dots) in the silica micelles, coated with silica shell. The thickness of silica shell could vary, starting from 3 to 4 nm. Increasing the shell thickness increases the photoluminescent characteristics of QDs in aqueous solution. The silica-shelled single CdSe/ZnS QD micelles possess a high quantum yield in aqueous solution, a controlled small size, sharp photoluminescence spectra (fwhm approximately 30 nm), an absence of aggregation, and a high transparency. The presence of a hydrophobic layer between the QD and silica shell ensures an incorporation of other hydrophobic molecules (with interesting properties) in the close proximity of nanocrystal. Thus, it is possible to combine the characteristics of hybrid material with the priority of small size. The nanoparticles are amino functionalized and ready for conjugation. A comparatively good biocompatibility is demonstrated. The nanoparticles show ability for intracellular delivery and are noncytotoxic during long-term incubation with viable cells in the absence of light exposure, which makes them appropriate for cell tracing and drug delivery.  相似文献   

13.
通过以金纳米粒子为表面晶种和壳生长的方法制备了金纳米壳包覆二氧化硅的复合纳米粒子。采用TEM 和UV-Vis对复合粒子进行了表征和研究,结果表明所得到的复合粒子粒径均匀、金纳米壳光滑完整,且壳厚度可通过反应物的用量来控制。当核半径与壳厚度之比在4到13之间变化时,复合粒子的光学共振峰在可见光区到近红外光区范围内可发生大于500 nm波长的移动。  相似文献   

14.
The sensitivities of five different core-shell nanostructures were investigated towards changes in the refractive index of the surrounding medium. The shift of the localized surface plasmon resonance (LSPR) maximum served as a measure of the (respective) sensitivity. Thus, gold-silver core-shell nanoparticles (NPs) were prepared with different shell thicknesses in a two-step chemical process without the use of any (possibly disturbing) surfactants. The measurements were supported by ultramicroscopic images in order to size the resulting core-shell structures. When compared to sensitivities of nanostructures reported in the literature with those of the (roughly spherical) gold-silver core-shell NPs, the latter showed comparable (or even higher) sensitivities than gold nanorods. The experimental finding is supported by theoretical calculation of optical properties of such core-shell NP. Extinction spectra of ideal spherical and deformed core-shell NPs with various core/shell sizes were calculated, and the presence of an optimal silver shell thickness with increased sensitivity was confirmed. This effect is explained by the existence of two overlapping plasmon bands in the NP, which change their relative intensity upon change of refractive index. Results of this research show a possibility of improving LSPR sensor by adding an extra metallic layer of certain thickness.  相似文献   

15.
Au/Ag核-壳结构纳米粒子的制备及其SERS效应   总被引:1,自引:0,他引:1  
随着大量有关表面增强拉曼散射 (SERS)的实验和理论研究的开展 ,金属纳米粒子作为一类重要的 SERS增强介质 ,已引起了人们浓厚的研究兴趣 [1] .而 Au和 Ag作为最常用的活性基底物质 ,更是研究的热点 [2 ,3 ] .最近 ,美国印第安那大学的 Nie等 [4 ] 在单个银纳米粒子上 ,观察到高达 1 0 14 ~ 1 0 15的SERS因子 .同时 ,他们的另外一项工作表明银纳米粒子的形状和大小对 SERS活性有很大影响 [5] .但是 ,由于 Ag溶胶制备的重复性较差 ,且粒度分布不均匀 ,通过控制银颗粒大小而调控 SERS活性是相当困难的[6] .与 Ag相比 ,Au在可见光…  相似文献   

16.
CdS and CdS/ZnS core-shell structure nano particles were synthesized in micro emulsion, and characterized by X-ray diffraction(XRD), transmission electron microscopy (TEM), UV absorption spectra and PL. The average diameter of CdS was about 3.3 nm, and CdS/ZnS core-shell structure was confirmed by XRD and UV. Considering the optical properties of CdS/ZnS core-shell structure nanoparticles which have different ZnS shell thickness, the UV absorption edge of CdS/ZnS becomes as lightred-shift with the thickness of ZnS layer increasing, and the absorption of shortwave band is strongly enhanced at the same time. The PL spectra indicate that ZnS shell layer can greatly eliminate surface defects of CdS nanoparticles and make its band-edge directed recombination increased, and the luminous efficiency of CdS is improved greatly when it has appropriate shell thickness.  相似文献   

17.
We report novel thermosensitive hybrid core-shell particles via in situ gold nanoparticle formation using thermosensitive core-shell particles as a template. This method for the in situ synthesis of gold nanoparticles with microgel interiors offers the advantage of eliminating or significantly reducing particle aggregation. In addition, by using thermosensitive microgel structures in which the shell has thermosensitive and gel properties in water--whereas the core itself is a water-insoluble polymer--we were able to synthesize the gold nanoparticles only at the surface of the core, which had reactive sites to bind metal ions. After the gold nanoparticles were synthesized, electroless gold plating was carried out to control the thickness of the gold nanoshells. The dispersions of the obtained hybrid particles were characterized by dynamic light scattering and UV-vis absorption spectroscopy, and the dried particles were also observed by electron microscopy. Adaptation of the technique shown here will create a number of applications as optical, electronic, and biomedical functional materials.  相似文献   

18.
金属介电核壳结构复合材料的制备、性质及应用   总被引:1,自引:0,他引:1  
金属介电核壳结构复合纳米颗粒因其独特的结构而具有许多奇异的性质,尤其表现在表面等离子体共振特性上。通过改变金属纳米颗粒的大小和核壳的相对尺寸,可实现光学共振在很宽波段内的可调特性。这一特性不仅在光子学,而且在生物光子学、生物医学等领域都有广泛的应用前景。本文介绍了几种金属介电核壳结构纳米颗粒的制备、性质及其应用。  相似文献   

19.
孔珺  邱涵  余敏  张兵波 《化学学报》2012,70(6):789-795
亲水性量子点的荧光性能是其作为生物检测探针的一个重要质量指标. 不同结构的量子点在亲水性修饰过程中, 其抵抗荧光淬灭的能力差异较大. 设计与制备具有不同结构和成分的核、核壳量子点, 再通过双亲性高分子对其亲水性改性, 利用荧光光谱监测亲水性修饰过程中的荧光性能变化来度量所合成量子点的光化学稳定性. 实验结果表明,在表面亲水性修饰过程中, 未包覆壳层的裸核量子点其抵抗荧光淬灭的能力最弱; 包覆壳层的核壳量子点, 其抵抗荧光淬灭的能力增强, 且壳层越多, 抵抗能力越强. 壳层的结构和成分直接影响核壳量子点抵抗荧光淬灭的能力, 具有合理晶格匹配的核壳量子点, 其抵抗荧光淬灭的能力较强. 另外, 通过优化设计与制备的核壳量子点经表面亲水性修饰后, 再偶联叶酸, 构建出特异性生物荧光探针, 对乳腺癌细胞进行靶向性标记后, 利用流式细胞仪进行细胞检测分析. 实验结果表明, 通过优化制备的核壳量子点, 亲水性修饰后仍具有很好的荧光性能, 偶联叶酸后具有较好的细胞靶向性.  相似文献   

20.
The electronic and optical natures of silica-coated semiconductor nanocrystals (Cd(2)Te(2)@(SiO(2))(24)) have been investigated by density functional theory (DFT) and time-dependent DFT calculations. The calculated results of Cd(2)Te(2)@(SiO(2))(24) have revealed that the structural synergy effect between the Cd(2)Te(2) quantum dots (QDs) and the silica coating shell plays a dominant role in the photoelectric properties. The binding of embedded Cd(2)Te(2) to the outer silica coating shell leads to the distortion of the silica nanocage, indicating strong coupling between the QDs and silica shell. The optical features of Cd(2)Te(2) clusters and Cd(2)Te(2)@(SiO(2))(24) complexes were evaluated using the time-dependent DFT method. It is determined that the maximal absorption peak of isolated Cd(2)Te(2) in a UV-Vis absorption spectrum appears at 584 nm, which shifts to 534 nm when the Cd(2)Te(2) QDs were encapsulated by silica, in close agreement with the experimental evidence. The excited process has a direct electronic transition character from the occupied Cd(2)Te(2) states to the outer silica nanocage excited states (core → shell electronic transitions). A deep insight into silica-coated QD systems is beneficial for understanding their optical nature and the development of core/shell QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号