首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three fluorescent probes CdABA', CdABA and ZnABA', which are structural isomers of ZnABA, have been designed with N,N-bis(2-pyridylmethyl) ethylenediamine (BPEA) as chelator and 2-aminobenzamide as fluorophore. These probes can be divided into two groups: CdABA, CdABA' for Cd(2+) and ZnABA, ZnABA' for Zn(2+). Although there is little difference in their chemical structures, the two groups of probes exhibit totally different fluorescence properties for preference of Zn(2+) or Cd(2+). In the group of Zn(2+) probes, ZnABA/ZnABA' distinguish Zn(2+) from Cd(2+) with F(Zn)(2+)-F(Cd)(2+) = 1.87-2.00. Upon interchanging the BPEA and carbamoyl groups on the aromatic ring of the fluorophore, the structures of ZnABA/ZnABA' are converted into CdABA/CdABA'. Interestingly, the metal ions selectivity of CdABA/CdABA' was switched to discriminate Cd(2+) from Zn(2+) with F(Cd)(2+)-F(Zn)(2+) = 2.27-2.36, indicating that a small structural modification could lead to a remarkable change of the metal ion selectivity. (1)H NMR titration and ESI mass experiments demonstrated that these fluorescent probers exhibited different coordination modes for Zn(2+) and Cd(2+). With CdABA' as an example, generally, upon addition of Cd(2+), the fluorescence response possesses PET pathway to display no obvious shift of maximum λ(em) in the absence or presence of Cd(2+). However, an ICT pathway could be employed after adding Zn(2+) into the CdABA' solution, resulting in a distinct red-shift of maximal λ(em).  相似文献   

2.
Laboratory batch studies were conducted to evaluate the binding capacity and the mobility of metal species bound to typical humus peat matter. The identification of phase composition of mineral fractions and functional groups in the organic matter was assessed. The results showed generally high, but different retention capacity and binding strength, suggesting distinct diversity in binding mechanisms, phases and chemical nature of binding sites, depending on the metal species and their input concentrations. In general, the binding capacity of peat for the metal ions studied follows the order: Cr(3+) > Cu(2+) > Zn(2+) > Cd(2+) and results in the decrease of pH in the same order, due to displacement of H(3)O(+) from the peat by metal ions. The highest metal enrichment occurs in fractions F1(EXC), F2(CARB), F4(MRO) and F5(OM) of different binding strength adequate to exchangeable, carbonatic, moderately reducible amorphous Fe-oxide and organic/ sulphidic fractions in soils and sediments. In relation to species distribution in peats, the prevailing part of Cr(3+) is strongly bound in oxidizable organic substrate, while Cu(2+) is highly enriched in the moderately reducible F4(MRO) and the most labile F2(EXC) fractions. Cd(2+) and Zn(2+) are predominantly bound in the labile F1(EXC) and F2(CARB) fractions. Diversity of the predominant binding phases for the studied metals suggests rather weak competition for binding sites between chromium and copper ions; the strongest competition between the sorbed metal ions is anticipated for F1(EXC) and F2(CARB) fractions.  相似文献   

3.
The Hpn and HspA proteins from H. pylori are significant for nickel homeostasis and protect the cells from higher concentrations of external metal ions. Both proteins have a unique histidine- and cysteine-rich domain at the C terminus. The interactions of Ni(2+), Bi(3+), Zn(2+) and Cd(2+) ions with C-terminal Ac-CCSTSDSHHQ-NH(2) and Ac-EEGCCHGHHE-NH(2) fragments from Hpn and the Ac-GSCCHTGNHD-NH(2) sequence from HspA were studied by potentiometry, mass spectrometry, circular dichroism and UV-Vis spectroscopy. Ac-CC-NH(2) was used as a reference peptide. The studies have shown that nickel ions form planar complexes with a {2S(-),N(-)} binding mode. The thiol sulfurs of the -Cys-Cys- motif are also the anchoring sites for Bi(3+), Zn(2+) and Cd(2+) ions. The studied protein fragments have the highest affinity for Bi(3+) ions. The thermodynamic stability of Ni(2+) is much higher then that of Zn(2+).  相似文献   

4.
The histidine-rich peptide H5WYG (GLFHAIAHFIHGGWHGLIHGWYG) was found to induce membrane fusion at physiologic pH in the presence of zinc chloride. In this study, we examined the ion selectivity of the interaction of Zn(2+) with H5WYG. This investigation was conducted by using adsorption at air/water interface and mass spectrometry. We found that a peptide-metal complex is formed with Zn(2+) ions. Electrospray ionisation-mass spectrometry (ESI-MS) reveals that the [H5WYG + Zn + 2H](4+), [H5WYG + Zn + H](3+) and [H5WYG + Zn](2+) ions, appearing by increasing the amount of Zn(2+) equivalent, correspond to a monomolecular H5WYG - Zn(2+) complex. Tandem mass spectrometry (MS/MS) provides evidence for the binding of the single Zn(2+) ion to the H(11) and H(19) and probably H(15) residues.  相似文献   

5.
Reaction of 4-tert-butyl-2,6-diformylphenol with (1R,2R)- or (1S,2S)-1,2-diaminocyclohexane in the presence of 1 equivalent of Zn(2+) ions leads to selective formation of a chiral 2+2 macrocycle. Application of 0.5 equivalent of Zn(2+) ions under the same conditions leads to selective formation of a chiral 3+3 macrocycle, which forms a cavitand-shaped trinuclear double-decker complex with Zn(II).  相似文献   

6.
Three new isomorphic coordination polymers of Co(2+), Zn(2+) ions with flexible multicarboxylic acid ligand of the cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid (H(4)L), [Co(4)L(2)(H(2)O)(8)]·3H(2)O (1), [Zn(4)L(2)(H(2)O)(8)]·3H(2)O (2) and [Co(0.8)Zn(3.2)L(2)(H(2)O)(8)]·3H(2)O (3), have been synthesized under hydrothermal conditions and by means of controlling the pH of the reaction mixtures (with an initial pH of 6.0 for 1, 4.0 for 2, and 5.0 for 3, respectively). In the crystal of 1, two crystallographically different Co(2+) ions (Co1 and Co2) form a negatively-charged coordination polymeric chain, which contains a centrosymmetric, linear, trinuclear Co(2+) cluster (Co(3)L(2)) subunit; another crystallographically independent Co(2+) ion (Co3) coordinated to six water molecules acts as a counter ions to link the neighboring coordination polymeric chains via intermolecular H-bond interactions. The Co(2+) ions in 1 were completely and partially replaced by Zn(2+) ions to give 2 and 3, respectively. Complex 3 shows a novel molecular alloy nature, due to the random distributions of the Co(2+) and Zn(2+) ions. Three isomorphic complexes exhibit distinct thermal decomposition mechanisms. The deprotonated cis,cis,cis-1,2,3,4-cyclopentanetetracarboxylic acid ligands decompose at 420-750 °C to give the residue CoO in 1, ZnO + C in 2 and CoO + ZnO in 3. Complex 1 shows a complicated magnetic behavior with co-existence of antiferromagnetic exchange interactions between neighboring Co(2+) ions as well as strong spin-orbital coupling interactions for each Co(2+) ion; complex 3 exhibits a magnetically isolated high-spin Co(2+) ion behavior with strong spin-orbital coupling interactions.  相似文献   

7.
Interaction of the lacunary [alpha-XW9O33](9-) (X = As(III), Sb(III)) with Cu(2+) and Zn(2+) ions in neutral, aqueous medium leads to the formation of dimeric polyoxoanions, [(alpha-XW9O33)2M3(H2O)3](12-) (M = Cu(2+), Zn(2+); X = As(III), Sb(III)), in high yield. The selenium and tellurium analogues of the copper-containing heteropolyanions are also reported: [(alpha-XW9O33)2Cu3(H2O)3](10-) (X = Se(IV), Te(IV)). The polyanions consist of two [alpha-XW9O33] units joined by three equivalent Cu(2+) (X = As, Sb, Se, Te) or Zn(2+) (X = As, Sb) ions. All copper and zinc ions have one terminal water molecule resulting in square-pyramidal coordination geometry. Therefore, the title anions have idealized D3h symmetry. The space between the three transition metal ions is occupied by three sodium ions (M = Cu(2+), Zn(2+); X = As(III), Sb(III)) or potassium ions (M = Cu(2+); X = Se(IV), Te(IV)) leading to a central belt of six metal atoms alternating in position. Reaction of [alpha-AsW9O33](9-) with Zn(2+), Co(2+), and Mn(2+) ions in acidic medium (pH = 4-5) results in the same structural type but with a lower degree of transition-metal substitution, [(alpha-AsW9O33)2WO(H2O)M2(H2O)2](10-) (M = Zn(2+), Co(2+), Mn(2+)). All nine compounds are characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analysis. The solution properties of [(alpha-XW9O33)2Zn3(H2O)3](12-) (X = As(III), Sb(III)) were also studied by 183W-NMR spectroscopy.  相似文献   

8.
A water-soluble fluorescent sensor, 1, based on the "receptor-spacer-fluorophore" [2-(2'-aminophenyl)benzoxazole-amide-2-picolylamine] sensor platform, demonstrates the high sensitivity for Zn(2+) with a 25-fold fluorescence enhancement upon chelation to Zn(2+) and also exhibits high selectivity to Zn(2+) over other metal ions. X-ray crystal structure of Zn(2+) complex reveals that the amide oxygen (O2) cooperates with 2-picolylamine unit (N3, N4) as a receptor bind Zn(2+).  相似文献   

9.
A ratiometric fluorescent receptor with a C(3) symmetric structure based on a pyrene-linked triazole-modified homooxacalix[3]arene (L) was synthesized and characterized. This system exhibited an interesting ratiometric detection signal output for targeting cations and anions through switching the excimer emission of pyrene from the "on-off" to the "off-on" type in neutral solution. (1)H NMR titration results suggested that the Zn(2+) center of receptor L·Zn(2+) provided an excellent pathway of organizing anion binding groups for optimal host-guest interactions. It is thus believed that this receptor has potential application in sensing, detection, and recognition of both Zn(2+) and H(2)PO(4)(-) ions with different optical signals. In addition, the fluorescence emission changes by the inputs of Zn(2+) and H(2)PO(4)(-) ions can be viewed as a combinational R-S latch logic circuit at the molecular level.  相似文献   

10.
2-((Naphthalen-6-yl)methylthio)ethanol (HL) was prepared by one pot synthesis using 2-mercaptoethanol and 2-bromomethylnaphthalene. It was found to be a highly selective fluorescent sensor for Al(3+) in the physiological pH (pH 7.0-8.0). It could sense Al(3+) bound to cells through fluorescence microscopy. Metal ions like Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+), Cr(3+) and Pb(2+) did not interfere. No interference was also observed with anions like Cl(-), Br(-), F(-), SO(4)(2-), NO(3)(-), CO(3)(2-), HPO(4)(2-) and SCN(-). Experimentally observed structural and spectroscopic features of HL and its Al(3+) complex have been substantiated by computational calculations using density functional theory (DFT) and time dependent density functional theory (TDDFT).  相似文献   

11.
The metal ions Zn(2+), Co(2+), and La(3+) strongly catalyze the methanolysis of the activated amides acetylimidazole (1) and its ligand-exchange-inert Co(III) complex, (NH(3))(5)Co(III)-AcIm (2). Studies of the kinetics of methanolysis are performed with pH measurement and control, and the metal ions are soluble in the medium throughout the pH regions where ionization of the M(x+)(CH(3)OH)(y) occurs. Zn(2+) and Co(2+) act as Lewis acids toward 1, catalyzing attack of external methoxide on a 1:M(2+) complex at values only 100-fold lower than the diffusion limit, the k(OR) values being 5.6 x 10(7) M(-1) s(-1) and 2.5 x 10(7) M(-1) s(-1), while that for CH(3)O(-) attack on 2 is 4.69 x 10(7) M(-1) s(-1). Since neither Zn(2+) nor Co(2+) promotes the methanolysis of 2, these metals appear to be acting through transient binding to the distal N of 1, which activates the C=O of the complex to external CH(3)O(-) attack. La(3+) catalyzes the methanolysis of both 1 and 2, which occurs by a mechanism that is fundamentally different from that exhibited by Zn(2+) and Co(2+) in that the active species appears to be a bis-methoxy-bridged dimer (La(3+))(2)(CH(3)O(-))(2)(CH(3)OH)(x)() that interacts directly with the C=O unit of the substrate.  相似文献   

12.
A series of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivatives containing ion- and pH-sensory units have been successfully designed and synthesized. One of the compounds was structurally characterized by X-ray crystallography. Owing to the presence of an ICT absorption band, one of the compounds was found to show pronounced solvatochromic behavior in different organic solvents. Their emission energies in various solvents show a linear dependence on the Lippert solvent parameter. The cation-binding properties of the complexes with different metal ions (alkali metal, alkaline earth metal and transition metal ions) have been studied using UV-vis and emission spectroscopies. A 1?:?1 complexation to metal ions (Li(+), Na(+), Mg(2+), Ba(2+), Zn(2+), Cd(2+)) was found for the compound with one azacrown moiety in acetonitrile while another one with two azacrown moieties was shown to form 1?:?2 complexes with Zn(2+) and Mg(2+) cations. Their stability constants have been determined by both UV-vis and emission spectrophotometric methods. By introducing triarylborane moieties into the meso position and the 2-position of the BODIPY skeleton, different electronic absorption spectral changes together with an emission diminution were observed in response to fluoride ions. Ditopic binding study of 5, which was functionalized with both azacrown and triarylborane moieties, showed emission enhancement in the presence of Mg(2+) and F(-). These findings suggest that these BODIPY derivatives are capable of serving as versatile colorimetric and luminescence probes for pH, cations and F(-).  相似文献   

13.
Zn-doped Ga(2)O(3) samples were prepared by a homogeneous precipitation (HP) method, and the local structures of Zn ions and their photocatalytic activities for hydrogen production were examined. In the sample with low doping amount, the Zn(2+) ions substituted for the Ga(3+) ions in the Ga(2)O(3) photocatalyst and enhanced the photocatalytic activity, since they would improve the migration of the photoexcited electrons in the conduction band of the Ga(2)O(3) photocatalyst. In the sample with high doping amount, the Zn ions formed a composite ZnGa(2)O(4) phase in the bulk of the Ga(2)O(3) photocatalyst to decrease the photocatalytic activity in the present reaction.  相似文献   

14.
We have developed a series of fluorescent Zn(2+) sensor molecules with distinct affinities for Zn(2+), because biological Zn(2+) concentrations vary over a wide range from sub-nanomolar to millimolar. The new sensors have K(d) values in the range of 10(-8)-10(-4) M, compared with 2.7 nM for ZnAF-2. They do not fluoresce in the presence of other biologically important metal ions such as calcium or magnesium, and they can detect Zn(2+) within 100 ms. In cultured cells, the fluorescence intensity of ZnAF-2 was saturated at low Zn(2+) concentration, while that of ZnAF-3 (K(d) = 0.79 muM) was not saturated even at relatively high Zn(2+) concentrations. In hippocampal slices, we measured synaptic release of Zn(2+) in response to high-potassium-induced depolarization. ZnAF-2 showed similar levels of fluorescence increase in dentate gyrus (DG), CA3 and CA1, which were indistinguishable. However, ZnAF-3 showed a fluorescence increase only in DG. Thus, by using a combination of sensor molecules, it was demonstrated for the first time that a higher Zn(2+) concentration is released in DG than in CA3 or CA1 and that we can easily visualize Zn(2+) concentration over a wide range. We believe that the use of various combinations of ZnAF family members will offer unprecedented versatility for fluorescence-microscopic imaging of Zn(2+) in biological applications.  相似文献   

15.
Chen C  Wang R  Guo L  Fu N  Dong H  Yuan Y 《Organic letters》2011,13(5):1162-1165
A novel squaraine-based chemosensor SQ-1 has been synthesized, and its sensing behavior toward various metal ions was investigated by UV-vis and fluorescence spectroscopies. In AcOH-H(2)O (40:60, v/v) solution, Hg(2+) ions coordinate with SQ-1 causing a deaggregation which induces a visual color and absorption spectral changes as well as strong fluorescence. In contrast, the addition of other metals (e.g., Pb(2+), Cd(2+), Cu(2+), Zn(2+), Al(3+), Ni(2+), Co(2+), Fe(3+), Ca(2+), K(+), Mg(2+), Na(+), and Ag(+)) does not induce these changes at all. Thus SQ-1 is a specific Hg(2+) sensing agent due to the inducing deaggregation of the dye molecule by Hg(2+).  相似文献   

16.
Duan X  Yuan D  Yu F 《Inorganic chemistry》2011,50(12):5460-5467
Co(x)Zn(1-x)Al(2)O(4) (x = 0.01-0.6) nanoparticles were synthesized by the citrate sol-gel method and were characterized by X-ray powder diffraction and transmission electron microscopy to identify the crystalline phase and determine the particle size. X-ray photoelectron spectroscopy and (27)Al solid-state NMR spectroscopy were used to study the distribution of the cations in the tetrahedral and octahedral sites in Co(x)Zn(1-x)Al(2)O(4) nanoparticles as a function of particle size and composition. The results show that all of the as-synthesized samples exhibit spinel-type single phase; the crystallite size of the samples is about 20-50 nm and increases with increasing annealing temperature and decreases with Co-enrichment. Zn(2+) ions are located in large proportions in the tetrahedral sites and in small proportions in the octahedral sites in Co(x)Zn(1-x)Al(2)O(4) nanoparticles. The fraction of octahedral Zn(2+) increases with increasing Co concentration and decreases with increasing particle size. Besides the tetrahedral and octahedral coordinations, the presence of the second octahedrally coordinated Al(3+) ions is observed in the nanoparticles. The change of the inversion parameter (2 times the fraction of Al(3+) ions in tetrahedral sites) with Co concentration and particle size is consistent with that of the Zn fraction in octahedral sites. Analysis of the absorption properties indicates that Co(2+) ions are located in the tetrahedral sites as well as in the octahedral sites in the nanoparticles. The inversion degree of Co(2+) decreases with increasing particle size.  相似文献   

17.
Bo QB  Wang HY  Wang DQ  Zhang ZW  Miao JL  Sun GX 《Inorganic chemistry》2011,50(20):10163-10177
In attempts to investigate whether the photoluminescence properties of the Zn-based heterometal-organic frameworks (MOFs) could be tuned by doping different Ln(3+) (Ln = Sm, Eu, Tb) and Mn(2+) ions, seven novel 3D homo- and hetero-MOFs with a rich variety of network topologies, namely, [Zn(mip)](n) (Zn-Zn), [Zn(2)Mn(OH)(2)(mip)(2)](n) (Zn-Mn), [Mn(2)Mn(OH)(2)(mip)(2)](n) (Mn-Mn), [ZnSm(OH)(mip)(2)](n) (Zn-Sm), [ZnEu(OH)(mip)(2)](n) (Zn-Eu1), [Zn(5)Eu(OH)(H(2)O)(3)(mip)(6)·(H(2)O)](n) (Zn-Eu2), and [Zn(5)Tb(OH)(H(2)O)(3)(mip)(6)](n) (Zn-Tb), (mip = 5-methylisophthalate dianion), have been synthesized hydrothermally based on a single 5-methylisophthalic acid ligand. All compounds are fully structurally characterized by elemental analysis, FT-IR spectroscopy, TG-DTA analysis, single-crystal X-ray diffraction, and X-ray powder diffraction (XRPD) techniques. The various connectivity modes of the mip linkers generate four types of different structures. Type I (Zn-Zn) is a 3D homo-MOF with helical channels composed of Zn(2)(COO)(4) SBUs (second building units). Type II (Zn-Mn and Mn-Mn) displays a nest-like 3D homo- or hetero-MOF featuring window-shaped helical channels composed of Zn(4)Mn(2)(OH)(4)(COO)(8) or Mn(4)Mn(2)(OH)(4)(COO)(8) SBUs. Type III (Zn-Sm and Zn-Eu1) presents a complicated corbeil-like 3D hetero-MOF with irregular helical channels composed of (SmZnO)(2)(COO)(8) or (EuZnO)(2)(COO)(8) heterometallic SBUs. Type IV (Zn-Eu2 and Zn-Tb) contains a heterometallic SBU Zn(5)Eu(OH)(COO)(12) or Zn(5)Tb(OH)(COO)(12), which results in a 3D hetero-MOF featuring irregular channels impregnated by parts of the free and coordinated water molecules. Photoluminescence properties indicate that all of the compounds exhibit photoluminescence in the solid state at room temperature. Compared with a broad emission band at ca. 475 nm (λ(ex) = 380 nm) for Zn-Zn, compound Zn-Mn exhibits a remarkably intense emission band centered at 737 nm (λ(ex) = 320 nm) due to the characteristic emission of Mn(2+). In addition, the fluorescence intensity of compound Zn-Mn is stronger than that of Mn-Mn as a result of Zn(2+) behaving as an activator for the Mn(2+) emission. Compound Zn-Sm displays a typical Sm(3+) emission spectrum, and the peak at 596 nm is the strongest one (λ(ex) = 310 nm). Both Zn-Eu1 and Zn-Eu2 give the characteristic emission transitions of the Eu(3+) ions (λ(ex) = 310 nm). Thanks to the ambient different crystal-field strengths, crystal field symmetries, and coordinated bonds of the Eu(3+) ions in compounds Zn-Eu1 and Zn-Eu2, the spectrum of the former compound is dominated by the (5)D(0) → (7)F(2) transition (612 nm), while the emission of the (5)D(0) → (7)F(4) transition (699 nm) for the latter one is the most intense. Compound Zn-Tb emits the characteristic Tb(3+) ion spectrum dominated by the (5)D(4) → (7)F(5) (544 nm) transition. Upon addition of the different activated ions, the luminescence lifetimes of the compounds are also changed from the nanosecond (Zn-Zn) to the microsecond (Zn-Mn, Mn-Mn, and Zn-Sm) and millisecond (Zn-Eu1, Zn-Eu2, and Zn-Tb) magnitude orders. The structure and photoluminescent property correlations suggest that the presence of Mn(2+) and Ln(3+) ions can activate the Zn-based hetero-MOFs to emit the tunable photoluminescence.  相似文献   

18.
The fluorescent chemosensors 3, 5 and 7 based on thiacalix[4]arene bearing naphthyl groups have been designed and synthesized. The optical chemosensor 3 based on a thiacalix[4]arene of cone conformation behaves as "turn-on" optical chemosensor for Fe(3+) and F(-) ions. However, chemosensors 5 and 7 based on a thiacalix[4]arene of 1,3-alternate conformation demonstrate "turn-on" optical behaviour for Hg(2+), F(-) ions (with receptor 5 as turn-on for K(+) ions also) and "turn-off" behaviour for Fe(3+) ions. The simultaneous presence of Fe(3+) and Hg(2+) or K(+) or F(-) ions results in formulation of reversible "on-off" switches. Various molecular logic gates developed in response to molecular switching between these chemical inputs have been integrated into sequential logic circuits with memory function in a feedback loop which mimics "set-reset" molecular level information processing device.  相似文献   

19.
Hu YZ  Xiang Q  Thummel RP 《Inorganic chemistry》2002,41(13):3423-3428
A series of four biphen (phen = 1,10-phenanthroline) ligands, 2,2'-biphen (1), 3,3'-biphen (2), 2,2'-dimethylene-3,3'-biphen (3), and 2,3'-dimethylene-3,2'-biphen (4), is prepared by coupling and Friedl?nder methodology. The corresponding mononuclear Ru(II) complexes, [Ru(1-4)(Mebpy)(2)](2+) where Mebpy = 4,4'-dimethyl-2,2'-bipyridine, are prepared. These complexes show long wavelength electronic absorptions at 441-452 nm and emissions at 622-641 nm. Metal-based oxidations occur in the range 1.18-1.21 V, and ligand-based reductions, at -1.20 to -1.30 V. The addition of Zn(2+), Cd(2+), or Hg(2+) ions results in a strong enhancement and red shift of the luminescence of complex Ru-3. Alkali and alkaline earth metal ions barely affect the luminescence of Ru-3 while transition metal ions such as Co(2+), Cu(2+), Ni(2+), and Mn(2+) lead to efficient quenching of the Ru-3 luminescence. The luminescence of Ru-2 and Ru-4 is quenched in the presence of Zn(2+) because of a conformationally induced reduction in electronic communication between the two phen halves of the ligand. The addition of Zn(2+) has only a slight effect on the luminescence of Ru-1 because of steric hindrance toward complexation.  相似文献   

20.
Novel 4-hydroxyquinoline (4HQ) based tautomeric switches are reported. 4HQs equipped with coordinative side arms (8-arylimino and 3-piperidin-1-ylmethyl groups) were synthesized to access O- or N-selective chelation of Zn(2+) and Cd(2+) ions by 4HQ. In the case of the monodentate arylimino group, O chelation of metal ions induces concomitant switching of phenol tautomer to the keto form in nonpolar or aprotic media. This change is accompanied by selective and highly sensitive fluorometric sensing of Zn(2+) ions. In the case of the bidentate 8-(quinolin-8-ylimino)methyl side arm, NMR studies in CD(3) OD indicated that both Cd(2+) and Zn(2+) ions afford N chelation for 4HQ, coexisting with tautomeric switching from quinolin-4(1H)-one to quinolin-4-olate. In corroboration, UV/Vis-monitored metal-ion titrations in toluene and methanol implied similar structural changes. Additionally, fluorescence measurements indicated that the metal-triggered tautomeric switching is associated with compound signaling properties. The results are supported by DFT calculations at the B3LYP 6-31G* level. Several X-ray structures of metal-free and metal-chelating 4HQ are presented to support the solution studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号