首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘育  徐法强 《分子催化》1994,8(2):138-142
直接利用甲烷氧化偶联产物中的稀乙烯制环氧乙烷刘育,徐法强,沈师孔(中国科学院兰州化学物理研究所,兰州,730000)关键词乙烯环氧化,甲烷氧化偶联,负载银催化剂1.前言甲烷氧化偶联(OCM)是一个产物较为复杂的反应,从目前研究结果来看,产物中C2烃总...  相似文献   

2.
The oxidative coupling of methane (OCM) over titanate perovskite catalyst has been developed by three-dimensional numerical simulations of flow field coupled with heat transfer as well as heterogeneous kinetic model. The reaction was assumed to take place both in the gas phase and on the catalytic surface. Kinetic rate constants were experimentally obtained using a ten step kinetic model. The simulation results agree quite well with the data of OCM experiments, which were used to investigate the effect of temperature on the selectivity and conversion obtained in the methane oxidative coupling process. The conversion of methane linearly increased with temperature and the selectivity of C2 was practically constant in the temperature range of 973–1073 K. The study shows that CFD tools make it possible to implement the heterogeneous kinetic model even for high exothermic reaction such as OCM.  相似文献   

3.
Pulse reaction of methane in the presence and absence of free (or gaseous) oxygen and that of ethane and ethylene in the absence of free oxygen over Li−MgO, La−MgO and Sm−MgO (Li or La or Sm/Mg ratio=0.1) have been investigated for elucidating the role of lattice and free oxygen in oxidative coupling of methane (OCM) over these catalysts. No significant role is played by the lattice oxygen from these catalysts in the OCM process. The presence of free oxygen is essential for all these catalysts to be active and selective in OCM process. However, lattice oxygen plays some role in ethane conversion but a very significant role in ethylene conversion over these catalysts.  相似文献   

4.
低温甲烷氧化偶联Li- ZnO/La2O3催化剂   总被引:4,自引:0,他引:4  
采用浸渍法制备了Li- ZnO/La2O3催化剂并考察了其低温催化甲烷氧化偶联反应性能. 反应条件下, 在考察的w(Li)=2%和w(ZnO)=20%的Li- ZnO/La2O3在680 ℃得到了甲烷转化率为27.3%, C2选择性为65.2%, C2收率为17.8%的结果;在700 ℃, C2收率达到21.8%. Raman和XPS表征结果表明, 催化剂低温催化性能与表面的活性吸附氧物种含量相关;La2O2CO3物种可能是提高催化剂的C2选择性的关键.  相似文献   

5.
A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800℃), methane to oxygen ratio (4 10), and SiO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH:j techniques. The rise in oxygen concentration is not beneficial for the C5 selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytie system is highly potential for directly converting methane to liquid fuels.  相似文献   

6.
The selective oxidation of methane to basic petrochemicals (ethylene and ethane) is desirable and has attracted extensive research attention. The oxidative coupling of methane (OCM) is considered a promising one-step route for the production of C2 compounds (ethylene and ethane) from methane, and has been the focus of industrial and fundamental studies. It is widely accepted that the composition is a crucial factor governing the activity of a catalyst system. It was found that the phase structures, basicity, existing status and distribution of the active components, oxygen species, and chemical states of the catalyst were influenced by the composition and ratio, resulting in different catalytic performances for the OCM. In this study, a series of solid acid WO3/TiO2-supported lithium-manganese oxide catalysts for OCM were synthesized via the impregnation method. The impacts of diverse compositions, such as the individual contents (Li and Mn) and dual contents (Li-Mn), on the OCM were investigated in detail, using inductively coupled plasma optical emission spectrometry, X-ray diffraction, high-resolution transmission electron microscopy, CO2-temperature-programmed desorption, O2-temperature-programmed desorption, H2-temperature-programmed reduction, Raman spectroscopy, X-ray photoelectron spectroscopy, and CH4-temperature-programmed surface reaction. The addition of Li content to the catalyst not only led to the anatase-to-rutile crystal structure transformation of TiO2, and the reduction of the high-valence-state Mn species to low-valence-state Mn, but also increased the content of surface lattice oxygen and decreased the surface basicity. The observed effects on the structures and catalytic performance suggest that the Li content is helpful in suppressing the formation of completely oxidized CO2, and increases the C2 selectivity. Moreover, increasing the Li content of the catalyst facilitated the mobility of the lattice oxygen, which triggered the promotion of CH4 activation, thereby enhancing the OCM catalytic performance. The Mn content acted as the active sites for OCM; therefore, the performance of the catalyst was closely related to the Mn concentration and valence state. However, the WO3/TiO2-supported catalyst with excessive Mn content exhibited a high surface basicity, high valence state of Mn, and low abundant lattice oxygen, which was unfavorable for C2 selectivity. The Raman spectroscopy results revealed that MnTiO3 was formed due to the co-existence of Li and Mn on WO3/TiO2, and played an essential role in improving the low-temperature OCM performance. There was a synergic effect of the Li and Mn components on the OCM. The optimal performance (16.3% C2 yield) was achieved over the WO3/TiO2-supported lithium-manganese catalyst with n(Li) : n(Mn) = 2 : 1 at 750 ℃.  相似文献   

7.
8.
应用组成为Ba0.5Sr0.5Co0.8Fe0.2O3-(的钙钛矿型混合导体陶瓷膜制成膜反应器。该膜在进行氧分离的同时具有活化甲烷氧化偶联的催化功能。随着温度升高和膜的富氧端氧分压的增大,透氧量有所增加。在空气、氦气的氧分压梯度下,850(C,膜厚度为1.5 mm时,JO2可达到1.2 mL/(cm3(min)。同时在800(C~900(C温度范围内,该膜对于甲烷转化为乙烷和乙烯一般只具有0.5%~3.5%的低转化率,而选择性可达40%~70%。在反应尾气中发现了大量的未反应的分子氧,说明过量的氧与甲烷未经催化反应的气相反应导致了C2的选择性相对较低。OCM膜反应模式情况下的透氧量与空气、氦气梯度情况下的透氧量相比只有微小增加,这与POM膜反应模式情况下透氧量大量增加显著不同。  相似文献   

9.
The effects of manganese oxide or ceria promoters on the performance of Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) are reported. The OCM reaction was performed in a continuous-flow microreactor at 800 ℃, atmospheric pressure and under GHSV = 13200 ml gC-1at h-1. Catalysts were characterized by in situ conductivity measurement, FT-IR spectroscopy, XRD, SEM and temperature programmed reduction analysis. Manganese oxide promoted Na2WO4/SiO2 is considered as one of the active and selective ca...  相似文献   

10.
邹世辉  李志年  周秋月  潘洋  袁文涛  贺磊  王申亮  文武  刘娟娟  王勇  杜永华  杨玖重  肖丽萍  小林久芳  范杰 《催化学报》2021,42(7):1117-1125,中插16-中插20
天然气作为一种低碳清洁能源,其储量大,价格低,被认为是最有前途的石油替代资源之一.而以天然气的主要成分——甲烷为原料来生产高价值化学品被认为是石化工业中实现天然气取代石油为原料新化工路线的技术基础,具有极为可观的社会经济价值.目前甲烷的化学利用主要采用间接转化法,即先从甲烷制合成气,再由合成气制备各种化工原料和油品.但...  相似文献   

11.
The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio.  相似文献   

12.
以氧化镧催化剂在甲烷氧化偶联(OCM)反应中的结构敏感性实验研究为基础, 采用周期性密度泛函理论(DFT)计算研究氧化镧(001), (110)和(100)3个晶面及OCM反应物分子甲烷和氧在其上的吸附、 活化和解离. 结果表明, 氧化镧(001), (110)和(100)3个晶面的表面能大小顺序为(110)>(100)>(001), 3个晶面的价带和导带间隙大小顺序为(110)<(100)<(001), 即(001)是3个晶面中最稳定的晶面, 而(110)则是最活泼的晶面. 甲烷分子在氧化镧(001), (110)和(100)晶面上的吸附很弱(0.03 eV), H—CH3解离吸附能分别为2.16, 0.68和0.90 eV, 解离反应的难易性与晶面的活性顺序一致; 而氧分子在氧化镧(001), (110)和(100)晶面上的分子吸附能分别为-0.04, -0.31和-0.12 eV, 解离吸附能分别为1.22, 0.53和1.52 eV, 即氧化镧晶面结构对氧分子吸附具有明显的影响, 其中, (001)晶面上吸附最弱, (110)晶面上吸附最强, 以致O—O在(110)晶面上可以较低能垒(0.53 eV)解离, 形成亲电的过氧物种. 由于氧分子在氧化镧表面的吸附较甲烷分子强, 因此, 氧化镧在OCM反应中结构敏感性应与氧分子的吸附和活化密切相关. 甲烷和氧分子在氧化镧表面上活化的本质源自于电子自表面流向甲烷和氧分子的反键轨道, 且表面结构的改变会导致不同强度的电子流动驱动.  相似文献   

13.
采用柠檬酸法制备了Ca,Sr共掺杂的CeO_2催化剂,发现共掺杂催化剂较单掺杂或未掺杂催化剂呈现出更好的催化甲烷氧化偶联(OCM)反应性能.通过表征可知,Ca,Sr共掺杂催化剂的物相为CeO_2和SrCO_3,Ca高度分散或掺杂于CeO_2之中;CeO_2的粒径明显变小;表面呈中等程度碱性;Ce基催化剂上的亲电氧物种数量随着碱土金属的掺杂而增大,亲电氧物种与晶格氧摩尔比(O_2-2+O-2)/O-2的大小顺序(CeSrCaCe SrCeO_2)与C2选择性一致;且SrCO_3相的存在有助于Ce基氧化物催化甲烷氧化偶联反应(OCM)性能的改善.  相似文献   

14.
碱土元素氧化物是一类具有较好催化活性和选择性的甲烷氧化偶联(OCM)催化剂[1,2]。Filkova[3]等研究了不同的碱土金属氧化物促进的Nd2O3催化剂的OCM催化性能,发现在所有碱土金属氧化物-Nd2O3催化剂中,SrO-Nd2O3催化剂具有最高的生成C2烃的选择性,这可能因为SrO较强的碱性以及Sr  相似文献   

15.
有氧气氛下等离子体甲烷偶联反应的研究   总被引:2,自引:0,他引:2  
近年来,非平衡等离子体应用于甲烷直接转化的研究备受关注,但多数研究工作采用的是低气压下微波或高频放电产生的非平衡等离子体[1-9].在常压下获得非平衡等离子体一般是通过脉冲电晕放电或介质阻挡放电产生的[10,11].Liu等[12]采用电晕放电(非脉冲)研究了CH4+O2+He(pCH4=2.03×104Pa,pO2=5.07×103Pa,He平衡)体系的甲烷偶联反应.  如前文[13]所述,脉冲电晕等离子体是一种新型常压非平衡等离子体,其电子通过上升沿陡峭的窄脉冲电场加速而获得能量(1~20eV).将其应用于甲烷偶联反应,不仅具有反应条件温和(常温常压)…  相似文献   

16.
Oxidative coupling of methane (OCM) to ethylene and ethane is a futuristic process of great practical importance for the effective utilization of methane/natural gas. A brief summary of the work carried out at National Chemical Laboratory (Pune) for the development of catalyst and catalytic process for OCM, particularly addressing the major issues/limitations of the OCM process and efforts made to overcome the problems is presented. This review particularly covers the development of a number of highly active/selective and stable unsupported and supported (using commercial catalyst carriers) catalysts for the OCM process and also the process of improvements/modifications to overcome most of the limitations of OCM.  相似文献   

17.
The kinetics of the oxidative coupling of methane (OCM) in the presence of La/MgO and NaWMn/SiO2 catalysts in a flow reactor at low reactant conversions was studied. It was found that, in spite of different compositions and properties of the test catalysts, the formation of ethane from methane and ethylene from ethane can be described within the framework of the Mars-van Krevelen redox model in both cases. The rate laws of side reactions, which lead to the formation of carbon oxides, are different from the rate laws of the target reactions of the conversion of methane into ethane and ethane into ethylene. The kinetic parameters required for the numerical simulation of the OCM process were determined for either of the catalysts.  相似文献   

18.
利用CO2-TPD技术考察了Ba-La2O3系催化剂的表面碱性,实验发现,催化剂表面仅有单一的强碱位或中碱位时,其催化性能均较差。只有表面的中碱位与强碱位以适当量共同存在的样品(6%Ba-La2O3),才能获得好的催化活性和C2选择性。此碱性特征可能有利于表面活性位的产生。同时利用XRD和XPS等技术分别对体相结构和表面氧物种进行了研究。结果表明,Ba-La2O3系催化剂表面存在O2^2-离子,但  相似文献   

19.
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.  相似文献   

20.
La2-xSrxNiO4上氧的TPD及其氧化活性   总被引:4,自引:0,他引:4  
La2-xSrxNiO4上O2的TPD研究表明,氧的脱附性能与催化剂结构中Ni2+和Ni3+的性质及含量有关,晶格氧直接参与了CO的氧化与甲烷的氧化偶联。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号