首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu QY  Liu Y  Lu W  Zhang Y  Bian GQ  Niu GY  Dai J 《Inorganic chemistry》2007,46(24):10065-10070
A protonated bifunctional pyridine-based tetrathiafulvalene (TTF) derivative (DMT-TTF-pyH)NO3 and a copper(II) complex Cu(acac)2(DMT-TTF-py)2 have been obtained and studied. Electronic spectra of the protonated compound show a large ICT (intramolecular charge transfer) band shift (Deltalambda=136 nm) compared with that of the neutral compound. Cyclic voltammetry also shows a large shift of the redox potentials (DeltaE1/2(1)=77 mV). Theoretical calculation suggests that the pyridium substituent is a strong pi-electron acceptor. Crystal structures of the protonated compound and the metal complex have been obtained. The dihedral angle between least-squares planes of the pyridyl group and the dithiole ring might reflect the intensity of the ICT effect between the TTF moiety and the pyridyl group. It is also noteworthy that the TTF moiety could be oxidized to TTF2+ dication by Fe(ClO4)(3).6H2O when forming a metal complex, while the protonated TTF derivative can only be oxidized to the TTF*+ radical cation by Fe(ClO4)(3).6H2O even with an excess amount of the Fe(III) salt, which can be used to control the oxidation process to obtain neutral TTF, TTF*+ radical cation, or TTF2+ dication.  相似文献   

2.
QM/MM calculations were performed on ethyl chlorophyllide-a and its radical cation and anion, by using the density functional (DF) B3LYP method to determine the molecular characteristics, and a molecular mechanics (MM) method to simulate the solvating medium. The presence of the solvent was accounted for during the optimization of the geometry of the 85-atom chlorophyll-a system by using an ONIOM methodology. A total of 24 solvent molecules were explicitly considered during the optimization process, and these were treated by the universal force field (UFF) method. Initially, the split-valence 3-21G basis set was used for optimizing the geometry of the 85-atom species, neutral, cation and anion. Electronic energies were then determined for the optimized species by making use of the polarized 6-31G(d) basis set. The ionization energy calculated (6.0 eV) is in very good agreement with the observed one (6.1 eV). The MM+ force field was used to investigate the dynamics of the acetonitrile molecules around the neutral species as well as the radical ions of chlorophyll. The required atomic charges on all the atoms were obtained from calculations on all involved molecules at the DFT/6-31G(d) level. Randomly sampled configurations were used to determine the first solvation layer contribution to the free energy of solvation of various species. A truncated 46-atom model of ethyl chlorophyllide-a was used to evaluate the thermal energies of neutral chlorophyll molecule relative to its two radical ions in the gas phase. Born energy, Onsager energy, and the Debye-Huckel energy of the chlorophyll-solvent aggregate were added as perturbative corrections to the free energy of solvation that was initially obtained through molecular dynamics method for the same complex. These calculations yield the oxidation potential as 0.75 +/- 0.32 V and the reduction potential -1.18 +/- 0.31 V at 298.15 K. The calculated values are in good agreement with the experimental midpoint potentials of +0.76 and -1.04 V, respectively.  相似文献   

3.
Kinetic and thermodynamic properties of the aminoxyl (NH2O*) radical   总被引:1,自引:0,他引:1  
The product of one-electron oxidation of (or H-atom abstraction from) hydroxylamine is the H2NO* radical. H2NO* is a weak acid and deprotonates to form HNO-*; the pKa(H2NO*) value is 12.6+/-0.3. Irrespective of the protonation state, the second-order recombination of the aminoxyl radical yields N2 as the sole nitrogen-containing product. The following rate constants were determined: kr(2H2NO*)=1.4x10(8) M-1 s-1, kr(H2NO*+HNO-*)=2.5x10(9) M-1 s-1, and kr(2HNO-*)=4.5x10(8) M-1 s-1. The HNO-* radical reacts with O2 in an electron-transfer reaction to yield nitroxyl (HNO) and superoxide (O2-*), with a rate constant of ke(HNO-*+O2-->HNO+O2-*)=2.2x10(8) M-1 s-1. Both O2 and O2-* seem to react with deprotonated hydroxylamine (H2NO-) to set up an autoxidative chain reaction. However, closer analysis indicates that these reactions might not occur directly but are probably mediated by transition-metal ions, even in the presence of chelators, such as ethylenediamine tetraacetic acid (EDTA) or diethylenetriamine pentaacetic acid (DTPA). The following standard aqueous reduction potentials were derived: E degrees (H2NO*,2H+/H3NOH+)=1.25+/-0.01 V; E degrees (H2NO*,H+/H2NOH)=0.90+/-0.01 V; and E degrees (H2NO*/H2NO-)=0.09+/-0.01 V. In addition, we estimate the following: E degrees (H2NOH+*/H2NOH)=1.3+/-0.1 V, E degrees (HNO, H+/H2NO*)=0.52+/-0.05 V, and E degrees (HNO/HNO-*)=-0.22+/-0.05 V. From the data, we also estimate the gaseous O-H and N-H bond dissociation enthalpy (BDE) values in H2NOH, with BDE(H2NO-H)=75-77 kcal/mol and BDE(H-NHOH)=81-82 kcal/mol. These values are in good agreement with quantum chemical computations.  相似文献   

4.
Quantum mechanical/molecular mechanics (QM/MM) calculations were performed on the neutral, anionic, and dianionic forms of Pheophytin-a (Pheo-a) in N,N-dimethyl formamide (DMF) in order to calculate the absolute free energy of reduction of Pheo-a in solution. The geometry of the solvated species was optimized by restricted open-shell density functional treatment (ROB3LYP) using the 6-31G(d) basis set for the molecular species while the primary solvent shell consisting of 45 DMF molecules was treated by the MM method using the universal force field (UFF). Electronic energies of the neutral, anionic, and dianionic species were obtained by carrying out single point density functional theory (DFT) calculations using the 6-311+G(2d,2p) basis set on the respective ONIOM optimized geometries. The CHARMM27 force field was used to account for the dynamical nature of the primary solvation shell of 45 DMF molecules. In the calculations using solvent shells, the required atomic charges for each solvent molecule were obtained from ROB3LYP/6-31G(d) calculation on a single isolated DMF molecule. Randomly sampled configurations generated by the Monte Carlo (MC) technique were used to determine the contribution of the primary shell to the free energy of solvation of the three species. The dynamical nature of the primary shell significantly corrects the free energy of solvation. Frequency calculations at the ROB3LYP/6-31G(d) level were carried out on the optimized geometries of truncated 47-atom models of the neutral and ionic species in vacuum so as to determine the differences in thermal energy and molecular entropy. The Born energy of ion-dielectric interaction, the Onsager energy of dipole-dielectric interaction, and the Debye-Hückel energy of ion-ionic cloud interaction for the pheophytin-solvent aggregate were added as perturbative corrections. The Born interaction also makes a large contribution to the absolute free energy of reduction. An implicit solvation model (DPCM) was also employed for the calculation of standard reduction potentials in DMF. Both the models were successful in reproducing the standard reduction potentials. An explicit solvent treatment(QM/MM/MC + Born + Onsager + Debye corrections) yielded the one electron reduction potential of Pheo-a as -0.92 +/- 0.27 V and the two electron reduction potential as -1.34 +/- 0.25 V at 298.15 K, while the implicit solvent treatment yielded the corresponding values as -1.03 +/- 0.17 and -1.30 +/- 0.17 V, respectively. The calculated values more or less agree with the experimental midpoint potentials of -0.90 and -1.25 V, respectively. Moreover, a numerical finite difference Poisson-Boltzmann solver (FDPB) along with the DPCM methodology was employed to obtain the reduction potential of pheophytin in the thylakoid membrane. The calculated reduction potential value of -0.58 V is in excellent agreement with the reported value -0.61 V.  相似文献   

5.
Substituent effects on the energies (Eob) of electronic transitions of geminally diphenyl-substituted trimethylenemethane (TMM) radical cations 5a-k*+ and those of structurally related 1,1-diarylethyl cations 7a-k+ were determined experimentally by using electronic transition spectroscopy. In addition, transition energies of these radical cations were determined by using density functional theory (DFT) and time-dependent (TD)-DFT calculations. The electronic transition bands of 5a-k*+ and 7a-k+ have maxima (lambdaob) that appear at 500-432 and 472-422 nm, respectively. A Hammett treatment made by plotting the Eob values relative to that of the diphenyl-TMM radical cation 5d*+ (DeltaEob) vs the cationic substituent parameter sigma+ give a favorable correlation with a boundary point at sigma+ = 0.00 and a positive rho for sigma+ < 0 and a negative rho for sigma+ > 0. A comparison of the lambdaob and rho values for 5a-k*+ and 7a-k+ suggests that the chromophore of 5*+ is substantially the same as that of 7+. The results of TD-DFT calculations, which reproduce the experimental electronic transition spectra and relationships between DeltaEob and sigma+, and suggest that the absorption band of 5*+ is associated with the SOMO-X --> SOMO transition, while that of 7+ is due to the HOMO --> LUMO transition. Another interesting observation is that Cl and Br substituents in the diphenyl-substituted TMM radical cations and 1,1-diarylethyl cations 7a-k+ act as electron-donating groups in terms of their effect on the corresponding electronic transitions. The results show that the molecular structure of 5*+ is a considerably twisted and that 5*+ has a substantially localized electronic state in which the positive charge and odd electron are localized in the respective diarylmethyl and the allyl moieties.  相似文献   

6.
Electronic states and solvation of Cu and Ag aqua ions are investigated by comparing the Cu(2+) + e(-)--> Cu(+) and Ag(2+) + e(-)--> Ag(+) redox reactions using density functional-based computational methods. The coordination number of aqueous Cu(2+) is found to fluctuate between 5 and 6 and reduces to 2 for Cu(+), which forms a tightly bound linear dihydrate. Reduction of Ag(2+) changes the coordination number from 5 to 4. The energetics of the oxidation reactions is analyzed by comparing vertical ionization potentials, relaxation energies, and vertical electron affinities. The model is validated by a computation of the free energy of the full redox reaction Ag(2+) + Cu(+) --> Ag(+) + Cu(2+). Investigation of the one-electron states shows that the redox active frontier orbitals are confined to the energy gap between occupied and empty states of the pure solvent and localized on the metal ion hydration complex. The effect of solvent fluctuations on the electronic states is highlighted in a computation of the UV absorption spectrum of Cu(+) and Ag(+).  相似文献   

7.
The stable tetrathiafulvalene (TTF)‐linked 6‐oxophenalenoxyl neutral radical exhibits a spin‐center transfer with a continuous color change in solution caused by an intramolecular electron transfer, which is dependent on solvent and temperature. Cyclic voltammetry measurements showed that addition of 2,2,2‐trifluoroethanol (TFE) to a benzonitrile solution of the neutral radical induces a redox potential shift that is favorable for the spin‐center transfer. Temperature‐dependent cyclic voltammetry of the neutral radical using a novel low‐temperature electrochemical cell demonstrated that the redox potentials change with decreasing temperature in a 199:1 CH2Cl2/TFE mixed solvent. Furthermore, theoretical calculation revealed that the energy levels of the frontier molecular orbitals involved in the spin‐center transfer are lowered by the hydrogen‐bonding interaction of TFE with the neutral radical. These results indicate that the hydrogen‐bonding effect is a key factor for the occurrence of the spin‐center transfer of TTF‐linked 6‐oxophenalenoxyl.  相似文献   

8.
A bistable [2]rotaxane comprising an alpha-cyclodextrin (alpha-CD) ring and a dumbbell component containing a redox-active tetrathiafulvalene (TTF) ring system within its rod section has been synthesized using the Cu(I)-catalyzed azide-alkyne cycloaddition, and the redox-driven movements of the alpha-CD ring between the TTF and newly formed triazole ring systems have been elucidated. Microcalorimetric titrations on model complexes suggested that the alpha-CD ring prefers to reside on the TTF rather than on the triazole ring system by at least an order of magnitude. The fact that this situation does pertain in the bistable [2]rotaxane has not only been established quantitatively by electrochemical experiments and backed up by spectroscopic and chiroptical measurements but also been confirmed semiquantitatively by the recording of numerous cyclic voltammograms which point, along with the use of redox-active chemical reagents, to a mechanism of switching that involves the oxidation of the neutral TTF ring system to either its radical cationic (TTF*+) or dicationic (TTF2+) counterparts, whereupon the alpha-CD ring, moves along the dumbbell to encircle the triazole ring system. Since redox control by both chemical and electrochemical means is reversible, the switching by the bistable [2]rotaxane can be reversed on reduction of the TTF*+ or TTF2+ back to being a neutral TTF.  相似文献   

9.
Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H(2)O)(6)(2+/3+) and Ru(H(2)O)(6)(2+/3+). The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.  相似文献   

10.
Aqueous sulfuric acid containing up to approximately 14 M acid (H0 > or = -7.0) was used as solvent in pulse radiolytic redox studies to characterize cationic transients of phenol (C6H5OH) and map their reactions. The primary radical yields were first measured to correlate the variation in various radical concentrations as a function of increasing acid fraction in the solvent. Compared to their respective values at pH 2, the G(Ox*) increased with almost a linear slope of approximately 0.024 micromol J(-1) for H0(-1) (or pH(-1)) up to H0 -6.0 (Ox* = *OH + SO4*-), whereas G(H*) increased with a slope of approximately 0.033 micromol J(-1) for H0(-1) (or pH(-1)) up to H0 -5.0. In the presence of > 10 M acid (H0 < -5.0), phenol was oxidized to its radical cation, C6H5OH*+, which further reacted with phenol and generated the secondary, dimeric radical cation, (C6H5OH)2*+, following an equilibrium reaction C6H5OH*+ + C6H5OH <==> (C6H5OH)2*+, with K(eq) = 315 +/- 15 M(-1). The two cationic radicals were characterized from their individual UV-vis absorption spectra and acidity. The C6H5OH*+ absorption peaks are centered at 276 and 419 nm, and it was found to be more acidic (pKa = -2.75 +/- 0.05) than (C6H5OH)2*+ (pKa = -1.98 +/- 0.02), having its major peak at 410 nm. On the other hand, in the presence of < 6.5 M acid the C6H5O* reactions followed the radical dimerization route, independent of the parent phenol concentration.  相似文献   

11.
A covalently linked magnesium porphyrin-fullerene (MgPo-C60) dyad was synthesized and its spectral, electrochemical, molecular orbital, and photophysical properties were investigated and the results were compared to the earlier reported zinc porphyrin-fullerene (ZnPo-C60) dyad. The ab initio B3LYP/3-21G(*) computed geometry and electronic structure of the dyad predicted that the HOMO and LUMO are mainly localized on the MgP and C60 units, respectively. In o-dichlorobenzene containing 0.1 M (n-Bu)4NClO4, the synthesized dyad exhibited six one-electron reversible redox reactions within the potential window of the solvent. The oxidation and reduction potentials of the MgP and C60 units indicate stabilization of the charge-separated state. The emission, monitored by both steady-state and time-resolved techniques, revealed efficient quenching of the singlet excited state of the MgP and C60 units. The quenching pathway of the singlet excited MgP moiety involved energy transfer to the appended C60 moiety, generating the singlet excited C60 moiety, from which subsequent charge-separation occurred. The charge recombination rates, k(CR), evaluated from nanosecond transient absorption studies, were found to be 2-3 orders of magnitude smaller than the charge separation rate, k(CS). In o-dichlorobenzene, the lifetime of the radical ion-pair, MgPo*+-C60*-, was found to be 520 ns which is longer than that of ZnPo*+-C60*- indicating better charge stabilization in MgPo-C60. Additional prolongation of the lifetime of MgPo*+-C60*- was achieved by coordinating nitrogenous axial ligands. The solvent effect in controlling the rates of forward and reverse electron transfer is also investigated.  相似文献   

12.
Computer simulations are used to study solvation free energies and solubilities in supercritical solvents. Solvation free energies are calculated using the particle insertion method. The equilibrium solvent configurations required for these calculations are based on molecular dynamics simulations employing model solvent potentials previously tuned to reproduce liquid-vapor coexistence properties of the fluids Xe, C(2)H(6), CO(2), and CHF(3). Solutes are represented by all-atom potentials based on ab initio calculations and the OPLS-AA parameter set. Without any tuning of the intermolecular potentials, such calculations are found to reproduce the solvation free energies of a variety of typical solid solutes with an average accuracy of +/-2 kJmol. Further calculations on simple model solutes are also used to explore general aspects of solvation free energies in supercritical solvents. Comparisons of solutes in Lennard-Jones and hard-sphere representations of Xe show that solvation free energies and thus solubilities are not significantly influenced by solvent density fluctuations near the critical point. The solvation enthalpy and entropy do couple to these fluctuations and diverge similarly to solute partial molar volumes. Solvation free energies are also found to be little affected by the local density augmentation characteristic of the compressible regime. In contrast to solute-solvent interaction energies, which often provide a direct measure of local solvent densities, solvation free energies are remarkably insensitive to the presence of local density augmentation.  相似文献   

13.
The radical anions and radical cations of the two tautomers (1e and 1i) of 5,10,15,20-tetraphenyl N-confused free-base porphyrin have been studied using a combination of cyclic voltammetry, steady state absorption spectroscopy, and computational chemistry. N-Confused porphyrins (NCPs), alternatively called 2-aza-21-carba-5,10,15,20-tetraphenylporphyrins or inverted porphyrins, are of great interest for their potential as building blocks in assemblies designed for artificial photosynthesis, and understanding the absorption spectra of the corresponding radical ions is paramount to future studies in multicomponent arrays where electron-transfer reactions are involved. NCP 1e was shown to oxidize at a potential of E(ox) 0.65 V vs Fc(+)|Fc in DMF and reduce at E(red) -1.42 V, while the corresponding values for 1i in toluene were E(ox) 0.60 V and E(red) -1.64 V. The geometries of these radical ions were computed at the B3LYP/6-31+G(d)//B3LYP/6-31G(d) level in the gas phase and in solution using the polarizable continuum model (PCM). From these structures and that of H(2)TPP and its corresponding radical ions, the computed redox potentials for 1e and 1i were calculated using the Born-Haber cycle. While the computed reduction potentials and electron affinities were in excellent agreement with the experimental reduction potentials, the calculated oxidation potentials displayed a somewhat less ideal relationship with experiment. The absorption spectra of the four radical ions were also measured experimentally, with radical cations 1e(?+) and 1i(?+) displaying significant changes in the Soret and Q-band regions as well as new low energy absorption bands in the near-IR region. The changes in the absorption spectra of radical anions 1e(?-) and 1i(?-) were not as dramatic, with the changes occurring only in the Soret and Q-band regions. These results were favorably modeled using time-dependent density functional calculations at the TD-B3LYP/6-31+G(d)//B3LYP/6-31G(d) level. These results were also compared to the existing data of free base tetraphenylporphyrin and free base tetraphenylchlorin.  相似文献   

14.
Electrons and holes were injected selectively into poly-2,7-(9,9-dihexylfluorene) (pF) dissolved in a tetrahydrofuran (THF) and a 1,2-dichloroethane (DCE) solution, respectively, using pulse radiolysis. Transient absorption spectra of monoions of both signs revealed two bands attributable to formation of polarons, one in the visible region (pF+* at 580 nm, pF-* at 600 nm) and another in the near-IR region. Additional confirmation for the identification of pF+* and pF-* comes from bimolecular charge-transfer reactions, such as bithiophene-* + pF --> pF-* or pF+* + TTA --> +TTA+* (TTA = tri-p-tolylamine), in which known radical ions transfer charge to pF or from pF. Difference absorption spectra of pF chemically reduced by sodium in THF provided a ratio of absorbance of anions formed to bleaching of the neutral band at 380 nm. In conjunction with pulse-radiolysis results, the data show that each polaron occupies 4.5 +/- 0.5 fluorene units, most probably contiguous units. Extensive reduction of pF by sodium also revealed resistance to formation of bipolarons: excess electrons reside as separate polarons when two or more electrons were injected. Redox equilibria with pyrene and terthiophene by pulse radiolysis established reversible one-electron redox potentials of E0(pF+/0) = +0.66 V and E0(pF0/-) = -2.65 V vs Fc+/0. Together with the excited-state energy, these results predict a singlet exciton binding energy of 0.2 eV for pF in the presence of 0.1 M tetrabutylammonium tetrafluoroborate. This binding energy would increase substantially without an electrolyte.  相似文献   

15.
A dinuclear Ni(II) complex involving tetrathiafulvalene (TTF) radicals as ligands has been prepared and characterized, [Ni2(mu-Cl)2(L*+)2(I3)4(I2)3.(H2O)2.(C4H8O)3 (1), L = 4,5-bis(2-pyridylmethylsulfanyl)-4',5'-ethylenedithiotetrathiafulvalene. There are two types of intramolecular magnetic exchange interactions, namely one ferromagnetic Ni(II)-Ni(II) and one antiferromagnetic Ni(II)-TTF*+. This study is new in the respect of revealing a magnetic exchange interaction between a TTF*+ radical and a paramagnetic transition metal ion. This is due to the fact of a direct binding of the transition metal ion to the skeleton of the TTF*+ radical.  相似文献   

16.
Applying density functional theory (DFT)-based molecular dynamics simulation methods we investigate the effect of explicit treatment of electronic structure on the solvation free energy of aqueous Ru2+ and Ru3+.Our approach is based on the Marcus theory of redox half reactions, focussing on the vertical energy gap for reduction or oxidation of a single aqua ion. We compare the fluctuations of the quantum and classical energy gap along the same equilibrium ab initio molecular dynamics trajectory for each oxidation state. The classical gap is evaluated using a standard point charge model for the charge distribution of the solvent molecules (water). The quantum gap is computed from the full DFT electronic ground state energies of reduced and oxidized species, thereby accounting for the delocalization of the electron in the donor orbital and reorganization of the electron cloud after electron transfer (ET). The fluctuations of the quantum ET energy are well approximated by gaussian statistics giving rise to parabolic free energy profiles. The curvature is found to be independent of the oxidation state in agreement with the linear response assumption underlying Marcus theory. By contrast, the diabatic free energy curves evaluated using the classical gap as order parameter, while also quadratic, are asymmetric reflecting the difference in oxidation state. The response of these two order parameters is further analysed by a comparison of the spectral density of the fluctuations and the corresponding reorganization free energies.  相似文献   

17.
One-electron oxidation of alcohols such as methanol, ethanol, and 2-propanol by 1,3,5-trimethoxybenzene radical cation (TMB*+) in the excited state (TMB*+*) was observed during the two-color two-laser flash photolysis. TMB*+ was formed by the photoinduced bimolecular electron-transfer reaction from TMB to 2,3,5,6-tetrachlorobenzoquinone (TCQ) in the triplet excited-state during the first 355-nm laser flash photolysis. Then, TMB*+* was generated from the selective excitation of TMB*+ during the second 532 nm laser flash photolysis. Hole transfer rate constants from TMB*+* to methanol, ethanol, and 2-propanol were calculated to be (5.2 +/- 0.5) x 10(10), (1.4 +/- 0.3) x 10(11), and (3.2 +/- 0.6) x 10(11) M-1 s-1, respectively. The order of the hole transfer rate constants is consistent with oxidation potentials of alcohol. Formation of TCQH radical (TCQH*) with a characteristic absorption peak at 435 nm was observed in the microsecond time scale, suggesting that deprotonation of the alcohol radical cation occurs after the hole transfer and that TCQ radical anion (TCQ*-), generated together with TMB*+ by the photoinduced electron-transfer reaction, reacts with H+ to give TCQH*.  相似文献   

18.
The thermochemical constants for the oxidation of tyrosine and tryptophan through proton coupled electron transfer in aqueous solution have been computed applying a recently developed density functional theory (DFT) based molecular dynamics method for reversible elimination of protons and electrons. This method enables us to estimate the solvation free energy of a proton (H(+)) in a periodic model system from the free energy for the deprotonation of an aqueous hydronium ion (H(3)O(+)). Using the computed solvation free energy of H(+) as reference, the deprotonation and oxidation free energies of an aqueous species can be converted to pK(a) and normal hydrogen electrode (NHE) potentials. This conversion requires certain thermochemical corrections which were first presented in a similar study of the oxidation of hydrobenzoquinone [J. Cheng, M. Sulpizi, and M. Sprik, J. Chem. Phys. 131, 154504 (2009)]. Taking a different view of the thermodynamic status of the hydronium ion, these thermochemical corrections are revised in the present work. The key difference with the previous scheme is that the hydronium is now treated as an intermediate in the transfer of the proton from solution to the gas-phase. The accuracy of the method is assessed by a detailed comparison of the computed pK(a), NHE potentials and dehydrogenation free energies to experiment. As a further application of the technique, we have analyzed the role of the solvent in the oxidation of tyrosine by the tryptophan radical. The free energy change computed for this hydrogen atom transfer reaction is very similar to the gas-phase value, in agreement with experiment. The molecular dynamics results however, show that the minimal solvent effect on the reaction free energy is accompanied by a significant reorganization of the solvent.  相似文献   

19.
Spectroscopic and electrochemical characterizations of ferrocene- and biferrocene-functionalized terpyridine octanethiolate monolayer-protected clusters were investigated and reported. The electrochemical measurements of Ru2+ coordinated with 4'-ferrocenyl-2,2':6',2' '-terpyridine and 4'-biferrocenyl-2,2':6',2' '-terpyridine complexes were dominated by the Ru2+/Ru3+ redox couple (E(1/2) at approximately 1.3 V), Fe(2+)/Fe(3+) redox couples (E(1/2) from approximately 0.6 to approximately 0.9 V), and terpy/terpy-/terpy2- redox couples (E(1/)(2) at ca. -1.2 and ca. -1.4 V). The substantial appreciable variations detected in the Ru2+/Ru3+ and Fe2+/Fe3+ oxidation potentials indicate that there is an interaction between the Ru2+ and Fe2+ metal centers. The coordination of the Ru2+ metal center with 4'-ferrocenyl-2,2':6',2' '-terpyridine and 4'-biferrocenyl-2,2':6',2' '-terpyridine leads to an intense 1[(d(pi)Fe)6] --> 1[d(pi)Fe)5(pi*terpyRu)1] transition in the visible region. The 1[(d(pi)Fe)6] -->1[d(pi)Fe)5(pi*terpyRu)1] transition observed at approximately 510 nm revealed that there was a qualitative electronic coupling between metal centers. The coordination of the Ru2+ transition metal center lowers the energy of the pi*terpy orbitals, causing this transition.  相似文献   

20.
Nonaqueous redox‐flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum‐based deep‐eutectic‐solvent is investigated as an anolyte for redox‐flow batteries. The aluminum‐based deep‐eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li+/Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L−1 and an energy density of 189 Wh L−1 or 165 Wh kg−1 have been achieved when coupled with a I3/I catholyte. The prototype cell has also been extended to the use of a Br2‐based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L−1. The synergy of highly abundant, dendrite‐free, multi‐electron‐reaction aluminum anodes and environmentally benign deep‐eutectic‐solvent anolytes reveals great potential towards cost‐effective, sustainable redox‐flow batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号