首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of a nonionic photoresponsive surfactant system to changes in temperature is reported. This surfactant contains the light-sensitive azobenzene group, and when exposed to light, a solution of this surfactant contains a mixture of the cis and trans photoisomers of this group. The temperature of the surfactant solution has a strong impact on the time needed for the surfactant to diffuse and adsorb to a freshly formed interface. At surfactant concentrations that give rise to trans aggregates but not to cis aggregates, the transport of cis and of trans isomers to the surface of a pendant bubble have quite different temperature dependencies, owing largely to the difference in their aggregation states in bulk solution. Diffusion and adsorption of the cis isomer are described reasonably well by a simple diffusion model that accounts for the effect of temperature on the diffusion coefficient. The trans isomer, which was primarily bound in aggregates during these measurements, exhibits a stronger dependence of this adsorption time scale on the temperature of the solution. This temperature dependence of trans diffusion and adsorption is quantitatively consistent between samples containing only the trans isomer and samples containing a mixture of isomers. Fluorescence studies were done to determine the effect of temperature on the cmc of the surfactant. The critical concentration associated with the formation of cis-dominant aggregates increases modestly with increasing temperature. The cmc of the trans isomer also increases with increasing temperature, most significantly when the temperature exceeds about 35 degrees C. These trans cmc temperature-dependence data were incorporated into diffusion models that account for the potential roles of aggregates in the adsorption process. The observed temperature dependency of the trans adsorption time scale is consistent with a model that includes the effect of temperature on both the diffusivity and the supply of monomer via its effect on the cmc. Specifically, the results suggest that the dissolution of trans-dominant aggregates is important to the trans adsorption process. Further fluorescence studies were performed in which surfactant solutions containing aggregates were diluted rapidly, and the rate of dissolution of these aggregates was inferred from fluorescence decay. Aggregate breakup in colder trans samples is slower than in warmer samples, but these dissolution time scales are significantly shorter than those associated with the adsorption process. This is consistent with the assumption that aggregation kinetics do not contribute to the observed adsorption kinetics.  相似文献   

2.
Several water-soluble cationic surfactants, 4-alkylazobenzene-4'-(oxy-2-hydroxypropyl)trimethylammonium methylsulfate (AZMS) (AZMS-0, AZMS-1, AZMS-2, AZMS-4, and AZMS-8), containing alkylglycidylether and azoarene have been synthesized with high yields of 63-78% and their surface-active properties have been investigated upon irradiation with UV/vis light. All of the trans-AZMS surfactants are isomerized to cis-trans mixtures containing 92.5% cis isomer by UV light irradiation at 350 nm. The cis isomers in the mixtures are reverted to trans isomers by visible light irradiation (lambda>445 nm). Such photoisomerization induces changes in the surface activity of each surfactant. The critical micelle concentration (cmc) of the trans form of AZMS-8 surfactant is about 1.28x10(-4) mol/l. At the photostationary state, 92.5% of the trans form is changed to the cis form which exhibits a slightly higher cmc (3.41x10(-4) mol/l). The new cmc of AZMS surfactants upon photoisomerization is similar to that of the ideal mixed micellar system. In particular, the ratio of cmc(cis) to cmc(trans) of AZMS derivatives is about 1.87-2.85 which increases proportionally with the chain length of alkyl group. The minimum average area per molecule (A(min)(a/w)) for the trans and cis isomers of AZMS-8 is 0.60 and 0.74 nm(2), respectively. The difference in the A(min)(a/w) may originate from the structural differences in the two isomers. These values are quite different as compared to those of the conventional azobenzene surfactants. Copyright 2000 Academic Press.  相似文献   

3.
This paper reports on the microstructures formed in aqueous solutions containing mixtures of sodium dodecyl sulfate (SDS) and a photosensitive, bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA). By using quasi-elastic light scattering and small-angle neutron scattering, we determined that aqueous solutions containing SDS and the trans isomer of BTHA (0.1 wt % total surfactant, 15 mol % BTHA, 85 mol % SDS) form vesicles with average hydrodynamic diameters of 1350 +/- 50 angstroms and bilayer thicknesses of 35 +/- 2 angstroms. The measured bilayer thickness is consistent with a model of the vesicle bilayer in which the trans isomer of BTHA spans the bilayer. Upon illumination with UV light, the BTHA underwent photoisomerization to produce a cis-rich photostationary state (80% cis isomer). We measured this photoisomerization to drive the reorganization of vesicles into cylindrical aggregates with cross-sectional radii of 19 +/- 3 angstroms and average hydrodynamic diameters of 240 +/- 50 angstroms. Equilibration of the cis-rich solution in the dark at 25 degrees C for 12 h or illumination of the solution with visible light leads to the recovery of the trans-rich photostationary state of the solution and the reformation of vesicles, thus demonstrating the potential utility of this system as the basis of a tunable fluid.  相似文献   

4.
Mechanism of phototriggered isomerization of azobenzene and its derivatives is of broad interest. In this paper, the S(0) and S(1) potential energy surfaces of the ethylene-bridged azobenzene (1) that was recently reported to have highly efficient photoisomerization were determined by ab initio electronic structure calculations at different levels and further investigated by a semiclassical dynamics simulation. Unlike azobenzene, the cis isomer of 1 was found to be more stable than the trans isomer, consistent with the experimental observation. The thermal isomerization between cis and trans isomers proceeds via an inversion mechanism with a high barrier. Interestingly, only one minimum-energy conical intersection was determined between the S(0) and S(1) states (CI) for both cis → trans and trans → cis photoisomerization processes and confirmed to act as the S(1) → S(0) decay funnel. The S(1) state lifetime is ~30 fs for the trans isomer, while that for the cis isomer is much longer, due to a redistribution of the initial excitation energies. The S(1) relaxation dynamics investigated here provides a good account for the higher efficiency observed experimentally for the trans → cis photoisomerization than the reverse process. Once the system decays to the S(0) state via CI, formation of the trans product occurs as the downhill motion on the S(0) surface, while formation of the cis isomer needs to overcome small barriers on the pathways of the azo-moiety isomerization and rotation of the phenyl ring. These features support the larger experimental quantum yield for the cis → trans photoisomerization than the trans → cis process.  相似文献   

5.
We report light and small-angle neutron scattering measurements that characterize microstructures formed in aqueous surfactant solutions (up to 1.0 wt % surfactant) containing mixtures of sodium dodecyl sulfate (SDS) and the light-sensitive bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA) as a function of composition, equilibration time, and photostationary state (i.e., solutions rich in cis-BTHA or trans-BTHA). We observed formation of vesicles in both SDS-rich and trans-BTHA-rich regions of the microstructure diagram, with vesicles present over a particularly broad range of compositions for trans-BTHA-rich solutions. Illumination of mixtures of BTHA and SDS with a broadband UV light source leads to formation of photostationary states where the fraction of BTHA present as cis isomer (75-80% cis-BTHA) is largely independent of the mixing ratio of SDS and BTHA. For a relatively limited set of mixing ratios of SDS and BTHA, we observed UV illumination of SDS-rich vesicles to result in the reversible transformation of the vesicles to micellar aggregates and UV illumination of BTHA-rich vesicles to result in irreversible precipitation. Surprisingly, however, for many mixtures of trans-BTHA and SDS that formed solutions containing vesicles, illumination with UV light (which was confirmed to lead to photoisomerization of BTHA) resulted in only a small decrease in the number of vesicles in solution, relatively little change in the sizes of the remaining vesicles, and coexistance of the vesicles with micelles. These observations are consistent with a physical model in which the trans and cis isomers of BTHA present at the photostationary state tend to segregate between the different microstructures coexisting in solution (e.g., vesicles rich in trans-BTHA and SDS coexist with micelles rich in cis-BTHA and SDS). The results presented in this paper provide guidance for the design of light-tunable surfactants systems.  相似文献   

6.
We report evidence for photocontrolled stability and breakage of aqueous foams made from solutions of a cationic azobenzene-containing surfactant over a wide range of concentrations. Exposure to UV or visible lights results in shape and polarity switches in the surfactant molecule, which in turn affects several properties including critical micelle concentration, equilibrium surface tension, and the air-water interfacial composition (cis isomers are displaced by trans ones). We demonstrate that the trans isomer stabilizes foams, whereas the cis isomer forms unstable foams, a property that does not correlate with effects of light on surface tension, nor with total surfactant concentration. Achieving in situ breakage of foam is accordingly ascribed to the remote control of the dynamics of adsorption/desorption of the surfactant, accompanied by gradients of concentrations out of equilibrium. Photomodulation of adsorption kinetics and/or diffusion dynamics on interfaces is reached here by a noninvasive clean trigger, bringing a new tool for the study of foams.  相似文献   

7.
Abstract— An important regulator of numerous physiological processes in higher plants is abscisic acid (ABA), which is photoisomerized from the more biologically active cis isomer to the nearly inactive trans isomer by natural sunlight. It is possible that this photoisomerization is a UV control mechanism in functions regulated by ABA.
The quantum yields of both the cis to trans and trans to cis photoisomerizations were measured by an initial velocities method under various conditions of pH and oxygen concentration at room temperature. The yield for photoisomerization of cis-ABA ranged from 0.25 at pH 3.0 to 0.11 at pH 7.0. Oxygen partially quenched the process. The quantum yield varies only slightly with wavelength.
The quantum yield of photolysis of cis-ABA is reported for pH 3.0 as 0.06. This yield also varies slightly with wavelength and is relatively insensitive to oxygen. This relatively high yield explains the loss of potency of ABA during UV irradiation.
Phosphorescence of cis - and trans-ABA is observed in methanol at 77 K. Onset of the emission is at 350 nm. The emission spectra is the same for both isomers.
From these results a mechanism of UV action on plants based on the photoisomerization of the inactive trans-ABA to the biologically active cis isomer is proposed.  相似文献   

8.
Most azobenzene-based photoswitches use UV light for photoisomerization. This can limit their application in biological systems, where UV light can trigger unwanted responses, including cellular apoptosis. We have found that substitution of all four ortho positions with methoxy groups in an amidoazobenzene derivative leads to a substantial (~35 nm) red shift of the n-π* band of the trans isomer, separating it from the cis n-π* transition. This red shift makes trans-to-cis photoswitching possible using green light (530-560 nm). The cis state is thermally stable with a half-life of ~2.4 days in the dark in aqueous solution. Reverse (cis-to-trans) photoswitching can be accomplished with blue light (460 nm), so bidirectional photoswitching between thermally stable isomers is possible without using UV light at all.  相似文献   

9.
We have used small-angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryo-TEM) to determine the structure of aggregates formed by the photoresponsive surfactants diethylene glycol mono(4',4-butyloxy, butyl-azobenzene) (C4AzoOC4E2) and diethylene glycol mono(4',4-hexyloxy, butyl-azobenzene) (C4AzoOC6E2) under different illumination conditions. At high concentrations, the self-assembly behavior of these surfactants changes remarkably in response to different radiation conditions. The trans isomers assemble into bilamellar (C4AzoOC4E2) and unilamellar (C4AzoOC6E2) vesicles, while the cis isomers (under UV light) form bicontinuous phases. These light-induced structural changes are attributed to a change in the sign of the Gaussian rigidity, which is the direct result of azobenzene photoisomerization.  相似文献   

10.
采用密度泛函理论(DFT)方法研究了系列含绿色荧光蛋白发色团双自由基分子光学异构体的几何结构、极化率(αs)和第一超极化率(βtot).结果表明,引入电子给受体取代基使分子的极化率增大,而对第一超极化率有不同影响.对于光照前的反式结构,引入电子受体βtot值增加,且βtot值随取代基吸电子能力的增强而增大;引入电子给体βtot值降低,且βtot值随取代基给电子能力的增强而减小.当分子变成相应的顺式结构时,其βtot值变化趋势与反式结构的结果正好相反.光异构化前后分子的βtot值变化不同,引入电子受体使顺式结构的βtot值比反式结构的小,其中―NO2使顺式结构的βtot值减小为反式结构的1/6;引入电子给体使反式结构的βtot值比顺式结构的小,其中―NH2使反式结构的βtot值减小为顺式结构的1/6.从而,光异构化起到调节非线性光学(NLO)响应的作用.  相似文献   

11.
The cis-trans photoisomerization of crystalline or powdered cis,cis-1,4-diphenyl-1,3-butadiene (cc-DPB) was studied at room temperature. The progress of the reaction was monitored by fluorescence spectroscopy, powder X-ray diffraction, 1H NMR and HPLC. High conversions (up to 90%) to the trans,trans isomer were observed in a crystal to crystal reaction. Formation of the cis,trans isomer, the sole product obtained in solution and in very viscous glassy media at 77 K is entirely suppressed in the solid state. The observed two-bond photoisomerization is explained by Warshel's bicycle-pedal photoisomerization mechanism (BP). The results are consistent with X-ray diffraction measurements, which have revealed that cc-DPB molecules exist in crystals in edge to face alternating arrays of two conformer structures whose phenyl rings deviate significantly from the plane of the central diene moiety ( approximately 40 degrees ). One of the conformers has the two phenyls in parallel planes and the other in roughly perpendicular planes. Least motion considerations suggest that the former should undergo the two-bond photoisomerization more easily, in agreement with observations that indicate that the reaction proceeds in discrete stages. Recently reported cis,cis- to trans,trans-muconate photoisomerizations in the solid state are proposed to also proceed via the BP mechanism. The reactions are consistent with the X-ray crystal structures of the cis,cis-muconate isomers.  相似文献   

12.
Norikane Y  Tamaoki N 《Organic letters》2004,6(15):2595-2598
[reaction: see text] A new class of molecular machine exhibits a hingelike motion upon photoirradiation. The motion (close and open) can be operated by alternate irradiation with UV and visible light. The trans/trans and cis/cis isomers are thermally stable at 40 degrees C, and the photochemical closure reaction (from trans/trans to cis/cis isomer) is dependent on the intensity of the light used because of the short-lived intermediate (trans/cis isomer).  相似文献   

13.
We have compared the structural and photoisomerization properties of self-assembled monolayers (SAMs) comprising either the trans or cis isomers of azobenzene terminated dithiolane with in-chain amide unit, viz., 4-(phenyldiazenyl)phenyl-4-(1,2-dithiolane-3-yl)-butylcarboxamide ( 1). These films were prepared on Au(111) from solutions of both isomers. Structure and composition of the SAMs were studied by X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. The photoresponse of the films was monitored in real time by ellipsometry. SAMs fabricated from the trans isomer were found to be densely packed and highly ordered. These films did not show any discernible photoresponse upon irradiation with UV light, which, under favorable conditions, triggers the trans- cis isomerization. In contrast, films prepared from solutions containing predominantly the cis isomer were loosely packed and mostly disordered but exhibited reversible photoreactivity. The results confirm that steric effects, i.e., available free volume, play a dominant role for the photoresponse of aliphatic SAMs bearing the photoactive azobenzene group. The crystal structure of 1 ( trans isomer) exhibits a row-like aggregation of neighboring molecules by weak hydrogen bonds and can be taken as a model for the arrangement of 1 in the monolayer films. Further, in addition to the surface coordination behavior, we have also mimicked the chemisorption of the 1,2-dithiolane moiety onto the gold substrate in molecular coordination chemistry in oxidative addition reactions with the zero-valent platinum complex [Pt(PPh 3) 4].  相似文献   

14.
In the photostationary state, the cis/trans isomer ratio of azobenzene and 3,3′-dimethylazobenzene adsorbed in zeolite NaY increases significantly to ca. 90:10, in contrast to the reaction in cyclohexane. However, for azobenzene-4,4′-dicarboxylic acid diethyl ester the formation of the cis isomer is remarkably suppressed to ca. 30%. On the basis of ab initio MO calculations, it is suggested that electrostatic interaction between these azobenzenes and the metal ions in zeolite nanocavities regulates the cis-trans photoisomerization process. In addition, it is found that the photoisomerization behavior of azobenzenes adsorbed on silica gel is similar to that in NaY.  相似文献   

15.
Photoisomerization is an important reaction that confers photoresponsive functionality on nanoparticles. Although photoisomerization of molecules forming self-assembled monolayers on two-dimensional surfaces or three-dimensional clusters has been studied, a detailed picture of interactions of molecules undergoing isomerization with nanoparticles is not available. In this paper, we report on the photoisomerization of azobenzene derivatives spatially confined in gold nanoparticle (AuNP) aggregates. AuNP aggregates allow us to simultaneously probe the structural changes of molecules via surface-enhanced Raman spectroscopy (SERS) and the accompanying changes in interparticle interactions via surface plasmon couplings. AuNP aggregates are formed by the adsorption of synthesized azobenzene-derivatized sulfides (Az) onto the surfaces of AuNPs. The photoisomerization of the adsorbed Az from trans to cis by excitation at 365 nm causes the AuNPs to move close to each other in the aggregates, leading to a redshift of the surface plasmon coupling band in the UV-vis spectra and a concomitant rise in SERS intensity. SERS spectra reveal that the vibrational modes containing the N=N stretching character redshift upon irradiation, suggesting that the N=N bond is significantly weakened when Az is in the cis form in the AuNP aggregates. The weakening of the N=N bond is attributed to the interaction of the N=N bond, which is more exposed to the outside in the cis conformation, with the nearby AuNPs that have come closer by the isomerization of adsorbed Az. We find that backisomerization from cis to trans occurs much faster in the AuNP aggregates (k = 1.9 × 10(-2) min(-1)) than in solution (k = 1.3 × 10(-3) min(-1)) because of the reduced N=N bond order of cis-Az in the aggregates.  相似文献   

16.
Urocanic acid (UCA) is a chromophore in the stratum corneum. Ultraviolet radiation (ultraviolet B) has been shown to suppress mammalian cell-mediated immunity. The photoisomerization of trans -UCA to cis -UCA was proposed as the initiator of the suppression process. Cis -urocanic acid has been demonstrated to suppress immunity by a variety of experiments. Investigators should be aware that laboratory illumination may be capable of interconverting trans -UCA and cis -UCA during experimental manipulations. This possible inadvertent contamination of one isomer by the other may influence results. We demonstrated that fluorescent lamps, daylight, sunlight and incandescent lamps were able to bring about isomerization. Window glass and container materials of plastic and clear glass did not filter out effective wavelengths, but three commercial plastic diffusers on fluorescent fixtures prevented the isomerization. Because the molar extinction coefficient (ɛ) for cis -UCA is less than that of trans -UCA, we have exposed 0.1 m M trans -UCA to ambient light and monitored the change in absorbance. A method is given to calculate the percentage of trans and cis isomers from the absorbance at 277 nm when the initial purity and absorbance are known. Using this procedure, we validated the molar extinction coefficient of cis -UCA.  相似文献   

17.
《Analytical letters》2012,45(8):1541-1554
Abstract

Lewisite is generally a mixture of several components with the trans isomer of lewisite being the predominant compound. A geminal isomer has not been previously reported as one of the components of the mixture. In the lewisite samples we examined, the geminal isomer, dichloro(l-chlorovinyl)arsine, comprised 2.7 per cent of the total material compared to 95.2 and less than 1 per cent, respectively, for the trans and cis isomers. The remaining fraction was not identified. The geminal isomer of lewisite has been characterized along with the trans and cis isomers using several spectroscopic techniques. Proton NMR of the geminal isomer produced a coupling constant consistent with vinylic protons in a geminal configuration. Mass spectrometry and infrared spectroscopy characterizations were based on an ethanedithiol derivative of the lewisite isomers with gas chromatography used to first separate the derivatized isomers. The electron ionization massspectra of the trans and cis derivatives were very similar, but significant differences were observed in the mass spectrum of the geminal form. Infrared absorption spectra were obtained for the trans and geminal derivatives with significant differences observed between the two, but the method was not sensitive enough to detect the cis isomer.

  相似文献   

18.
A means to control DNA compaction with light illumination has been developed using the interaction of DNA with a photoresponsive cationic surfactant. The surfactant undergoes a reversible photoisomerization upon exposure to visible (trans isomer, more hydrophobic) or UV (cis isomer, more hydrophilic) light. As a result, surfactant binding to DNA and the resulting DNA condensation can be tuned with light. Dynamic light scattering (DLS) measurements were used to follow lambda-DNA compaction from the elongated-coil to the compact globular form as a function of surfactant addition and light illumination. The results reveal that compaction occurs at a surfactant-to-DNA base pair ratio of approximately 7 under visible light, while no compaction is observed up to a ratio of 31 under UV light. Upon compaction, the measured diffusion coefficient increases from a value of 0.6 x 10(-8) cm2/s (elongated coil with an end-to-end distance of 1.27 microm) to a value of 1.7 x 10(-8) cm2/s (compact globule with a hydrodynamic radius of 120 nm). Moreover, the light-scattering results demonstrate that the compaction process is completely photoreversible. Fluorescence microscopy with T4-DNA was used to further confirm the light-scattering results, allowing single-molecule detection of the light-controlled coil-to-globule transition. These structural studies were combined with absorbance and fluorescence spectroscopy of crystal violet in order to elucidate the binding mechanism of the photosurfactant to DNA. The results indicate that both electrostatic and hydrophobic forces are important in the compaction process. Finally, a DNA-photosurfactant-water phase diagram was constructed to examine the effects of both DNA and surfactant concentration on DNA compaction. The results reveal that precipitation, which occurs during the latter stages of condensation, can also be reversibly controlled with light illumination. The combined results clearly show the ability to control the interaction between DNA and the complexing agent and, therefore, DNA condensation with light.  相似文献   

19.
The effect of ionic strength on association between the cationic polysaccharide chitosan and the anionic surfactant sodium dodecyl sulfate, SDS, has been studied in bulk solution and at the solid/liquid interface. Bulk association was probed by turbidity, electrophoretic mobility, and surface tension measurements. The critical aggregation concentration, cac, and the saturation binding of surfactants were estimated from surface tension data. The number of associated SDS molecules per chitosan segment exceeded one at both salt concentrations. As a result, a net charge reversal of the polymer-surfactant complexes was observed, between 1.0 and 1.5 mM SDS, independent of ionic strength. Phase separation occurs in the SDS concentration region where low charge density complexes form, whereas at high surfactant concentrations (up to several multiples of cmc SDS) soluble aggregates are formed. Ellipsometry and QCM-D were employed to follow adsorption of chitosan onto low-charged silica substrates, and the interactions between SDS and preadsorbed chitosan layers. A thin (0.5 nm) and rigid chitosan layer was formed when adsorbed from a 0.1 mM NaNO3 solution, whereas thicker (2 nm) chitosan layers with higher dissipation/unit mass were formed from solutions at and above 30 mM NaNO3. The fraction of solvent in the chitosan layers was high independent of the layer thickness and rigidity and ionic strength. In 30 mM NaNO3 solution, addition of SDS induced a collapse at low concentrations, while at higher SDS concentrations the viscoelastic character of the layer was recovered. Maximum adsorbed mass (chitosan + SDS) was reached at 0.8 times the cmc of SDS, after which surfactant-induced polymer desorption occurred. In 0.1 mM NaNO3, the initial collapse was negligible and further addition of surfactant lead to the formation of a nonrigid, viscoelastic polymer layer until desorption began above a surfactant concentration of 0.4 times the cmc of SDS.  相似文献   

20.
[formula: see text] [1.1](3,3')-Azobenzenophane, in which two azobenzenes are cyclically connected by -CH2- chains at the meta positions, has been synthesized. The crystal structures of all isomers have been revealed. This is the first report on the crystal structure of the cis isomer of macrocyclic azobenzenes. The trans,trans isomer was slightly distorted, the trans,cis isomer highly deformed, and the cis,cis isomer unstrained. The thermal stability of cis isomers in solutions are deducible from the crystal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号