首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly boron-doped diamond electrodes are characterized voltammetrically employing Ru(NH3)63+/2+, Fe(CN)63−/4−, benzoquinone/hydroquinone, and cytochrome c redox systems. The diamond electrodes, which are polished to nanometer finish, are initially `activated' electrochemically and then pretreated by oxidation, reduction, or polishing. All electrodes give reversible cyclic voltammetric responses for the reduction of Ru(NH3)63+ in aqueous solution.Redox systems other than Ru(NH3)63+/2+ show characteristic electrochemical behavior as a function of diamond surface pretreatment. In particular, the horse heart cytochrome c redox system is shown to give reversible voltammetric responses at Al2O3 polished boron-doped diamond electrodes. No voltammetric response for cytochrome c is detected at anodically pretreated diamond electrodes. The observations are attributed to preferential interaction of the polished diamond surface with the reactive region of the cytochrome c molecule and low interference due to a lack of protein electrode fouling.  相似文献   

2.
Nanotextured diamond surfaces with geometrical properties close to protein dimensions were used for the realization of direct electron transfer of cytochrome c (cyt c) without any covalent bonding. The peroxidase activity of native and denatured cyt c was also investigated. Cyclic voltammograms of native cyt c show quasi-reversible electron transfer reactions, while no heme redox activity is detected for denatured cyt c. Unfolding (denaturation) of cyt c can be achieved in the presence of hydrogen peroxide. Partially or fully denatured cyt c showed higher peroxidase activity than native cyt c. This is because denatured cyt c loses its tertiary structure and hydrogen peroxide is easier to access the heme redox center. The apparent Michaelis–Menten constant Km for native and denatured cyt c has been determined to be 0.23 mM and 0.08 mM.  相似文献   

3.
The communication reports the direct oxidation of human haemoglobin at a bare boron-doped diamond electrode under moderately alkaline conditions with detection limit of 0.4 microM.  相似文献   

4.
Barek J  Jandová K  Pecková K  Zima J 《Talanta》2007,74(3):421-426
Voltammetric behavior of 2-aminobiphenyl, 3-aminobiphenyl, and 4-aminobiphenyl at a boron-doped nanocrystalline diamond film electrode was investigated using cyclic voltammetry and differential pulse voltammetry. Optimum conditions have been found for the determination of those genotoxic substances by differential pulse voltammetry at the above given electrode in the concentration range of 2 × 10−7 to 1 × 10−5 mol/L.  相似文献   

5.
Direct electrochemistry of hemoglobin (Hb) was observed at glassy carbon electrode (GCE) modified with undoped nanocrystalline diamond (UND) and Hb multilayer films via layer-by-layer assembly. UV-VIS absorbance spectroscopy, electrochemical impedance spectroscopy and cyclic voltammograms were employed to characterize the film. The results showed that the UND had the effect of enhancing the electron transfer between Hb and the electrode surface. Hb in the multilayer films maintained its bioactivity and structure. It also exhibited a good catalytic activity towards the reduction of H(2)O(2). The reciprocal of catalytic current showed a linear dependence on the reciprocal of H(2)O(2) concentration ranging from 0.5 microM to 0.25 mM with a detection limit of 0.4 microM. The apparent Michaelis-Menten constant was estimated to be 0.019 mM.  相似文献   

6.
采用超声辅助湿法合成的方法制备了羟基磷灰石与碳纳米管(HAp/MWNT)无机复合纳米材料,并将其修饰到玻碳电极表面上。研究了细胞色素c(Cyt c)在该复合纳米材料修饰电极表面上的电化学行为。实验结果表明,复合修饰材料对细胞色素c有很好的催化作用,其氧化还原峰峰差(ΔEp)为78 mV,式电位为15mV。在6.0×10-7-5.0×10-5mol/L浓度范围内,Cyt c的峰电流与其浓度呈良好的线性关系,其检测下限为3.0×10-7mol/L。关键词:细胞色素c;羟基磷灰石;碳纳米管;HAp/MWNT复合材料  相似文献   

7.
The direct electrochemistry of the single heme cytochrome c551 from the bacterium Pseudomonas aeruginosa has been investigated at gold electrodes surface-modified through chemisorption of polyfunctional organic molecules. The results have been compared and contrasted with those obtained under the same conditions for the eukaryotic cytochrome c from horse heart. Both cytochromes give a quasi-reversible electrode reaction at pH 6.0 at a modified interface presenting only 4-pyridyl groups to the solution suggesting the occurrence, in both cases, of a hydrogen bonding interaction from lysine side-chains on the protein to pyridyl-nitrogens on the electrode surface. However, in contrast, gold electrodes modified by Pyridine-n-AldehydeThioSemicarbazones (n = 2, 3, 4) give electrochemistry which is strongly isomer-dependent in the case of horse heart cytochrome c but completely isomer-independent in the case of cytochrome c551. It is suggested that interaction of the eukaryotic protein with surfaces is dominated by its lysine residues only, but that interaction of the bacterial cytochrome is through hydrogen bonding from the surface to both lysines and carboxylate groups of aspartate residues. This is supported by observation of the loss of cytochrome c551 electrochemistry at 4-pyridyl-only modified gold at pH 9.0 compared with the good, quasi-reversible electrochemistry maintained under the same conditions at PATS-4 modified gold. It is concluded that, while the two cytochromes show many similarities with respect to their structures and functions, they have quite different interfacial electron transfer reactions, particularly at PATS-modified electrodes. This may correlate with the known large differences between the two proteins in net electrostatic charge and surface charge distribution.  相似文献   

8.
The human cytochromes P450 are responsible for the clearance of ∼90% of xenobiotics yet comparatively little is known about their electrochemistry. Here we report the first direct electrochemistry of P450s from the 2C subfamily; one of the major groups of enzymes from this family. Specifically, the proteins that we have examined are recombinant human P450s 2C9, 2C18 and 2C19 and reversible FeIII/II couples are seen in the absence of dioxygen. Even in the presence of trace amounts of dioxygen, a pronounced cathodic response is seen which is assigned to catalytic reduction of the bound dioxygen ligand by the ferrous P450.  相似文献   

9.
We report linear sweep and square wave voltammetric studies on glucose oxidation at boron-doped diamond (BDD) electrodes in an alkaline medium in efforts to evaluate the techniques for electrochemically assaying glucose. The bare BDD electrode showed good linear responses to glucose oxidation for a concentration range from 0.5 to 10 mM glucose, which well encompasses the physiological range of 3-8 mM. The BDD electrodes did not experience interferences from ascorbic acid or uric acid during glucose detection. This method, when applied to real blood samples, gave results similar to those obtained by a commercial glucose monitor.  相似文献   

10.
Direct (non-mediated) electrochemical oxidation of ammonia on boron-doped diamond (BDD) electrode proceeds mainly at high pH (> 8) via free ammonia (NH3) oxidation. To enhance ammonia oxidation on BDD at low pH (< 8), where mainly ammonium (NH4+) is present, oxidation of ammonia was mediated by active free chlorine. In this process, electro-generated in situ active chlorine rapidly reacts with ammonia instead of being further electro-oxidized to chlorate at the electrode surface. Thus, active chlorine effectively removes ammonia from an acidic solution, while the formation of by-products such as chlorate and possibly perchlorate is minimized.  相似文献   

11.
Two important mechanisms for electron transfer processes at boron-doped diamond electrodes involving the oxidation of tetramethylphenylenediamine (TMPD) dissolved in aqueous solution and the oxidation of tetrahexylphenylenediamine (THPD) deposited in the form of microdroplets and immersed into aqueous eletrolyte solution are reported. For TMPD, the first oxidation step in aqueous solution follows the equation: Remarkably slow heterogeneous kinetics at a H-plasma-treated boron-doped diamond electrode are observed, consistent with a process following a pathway more complex than outer-sphere electron transfer. At the same boron-doped diamond electrode surface a deposit of THPD undergoes facile oxidation following the equation: This oxidation and re-reduction of the deposited liquid material occurs at the triple interface organic droplet|diamond|aqueous electrolyte and is therefore an example of a facile high-current-density process at boron-doped diamond electrodes due to good electrical contact between the deposit and the diamond surface. Received: 3 February 2000 / Accepted: 18 February 2000  相似文献   

12.
采用全氟磺酸树脂Nafion将金属氧化物Fe2O3颗粒细胞色素c(Cyt c)固定玻碳电极(GCE)表面,制备了Nafion-Cyt c-Fe2O3修饰的玻碳电极,构建了基于直接电子传递的过氧化氢生物传感器。在0.10mol/L pH7.0的磷酸盐缓冲溶液中,修饰电极的循环伏安曲线上显示出一对准可逆的氧化还原峰,式量电位为22mV。Cyt c在修饰电极表面的异相电子转移速率常数为1.21s-1。修饰后的电极对过氧化氢有良好响应,响应时间小于10s,电极的安培响应与过氧化氢浓度在2.0×10-6~3.0×10-3mol/L范围内成线性关系,检出限为1.0×10-6mol/L,米氏常数为1.35mmol/L,显示出较好的亲和力。  相似文献   

13.
Most approaches to electron conduction from electrode to the enzyme requires the use of mediators – molecular relays which can take electrons from the electrode and deliver them to the redox sites of the enzyme. In the present paper, the biocatalytic reduction of oxygen to water in the presence of laccase is shown to proceed on the boron-doped diamond at highly positive potentials and without any additional mediator. The onset of catalytic reduction current appears at 0.805 V vs. NHE in solutions of pH 5.2. Laccase is either dissolved in the solution or trapped on the BDD electrode in a thin film of lipidic cubic phase. The remarkable stability of the modified electrode, avoiding the use of mediators and positive potential of the dioxygen reduction process make the BDD–laccase system especially interesting for applications in electrochemical sensing and microbiofuel cells.  相似文献   

14.
Degradation of the antidepressant venlafaxine by an effective electrocatalytic process, boron-doped diamond (BDD) electrode, was study. The BDD electrode was selected as the anode, and the degradation efficiency of venlafaxine under different influencing factors was systematically investigated. The preliminary grasp of the degradation law of venlafaxine by anodic electro-degradation using BDD electrode was obtained. The experimental results showed that the electrochemical oxidation technology using BDD anode can effectively degrade venlafaxine and remove total organic carbon (TOC) from the solution, complete venlafaxine degradation and TOC elimination could be achieved within 30 and 120 min of BDD oxidation process, respectively, and it has good stability and reusability. Increasing the electrolyte concentration (≤0.1 mol/L) and current density (≤100 mA/cm2) within a certain range could accelerate the degradation of venlafaxine. HCO3 and PO43? could inhibit the degradation efficiency of venlafaxine through of competing for free radicals. It is interesting that the presence of Cl? significantly promoted the degradation efficiency of venlafaxine. The results of this study suggest that the Electro-degradation treatment may provide a promising way to treat venlafaxine contaminated water.  相似文献   

15.
The electrooxidation of citric acid, malic acid, alanine and cysteine at boron-doped diamond (BDD) electrodes and glassy carbon (GC) electrodes was investigated by use of cyclic voltammetry. Well-defined, irreversible peaks were obtained for the oxidation of citric acid and cysteine. Malic acid and alanine exhibit discernible responses. This preliminary study has shown that BDD has better sensitivity than GC for these compounds. Except for cysteine, none of the studied compounds exhibits a recognizable oxidation peak at GC electrodes at millimolar concentration levels.  相似文献   

16.
Highly conductive boron-doped diamond (BDD) electrodes are well suited for performing electrochemical measurements of nucleic acids in aqueous solution under diffusion-only control. The advantageous properties of this electrodic material in this context include reproducibility and the small background currents observed at very positive potentials, along with its robustness under extreme conditions so offering promising capabilities in future applications involving thermal heating or ultrasonic treatment. tRNA, single and double stranded DNA and 2'-deoxyguanosine 5'-monophosphate (dGMP) have been studied and well defined peaks were observed in all cases, directly assignable to the electro-oxidation of deoxyguanosine monophosphate.  相似文献   

17.
18.
In situ microwave activation has been applied to the electro-deposition and stripping of palladium metal (which is widely used as a catalyst) at cavitation resistant boron-doped diamond electrodes. Focused microwave radiation leading to heating, boiling, and cavitation is explored as an option to improve the speed and sensitivity of the analytical detection procedure. The deposition and anodic stripping of palladium by linear sweep voltammetry in 0.1 M KCl (pH 2) solution and at boron-doped diamond electrodes is shown to be strongly enhanced by microwave activation due to both (i) the increase in mass transport and (ii) the increase in the kinetic rate of deposition and stripping.The temperature at the electrode surface is calibrated with the reversible redox couple Fe(CN)64−/Fe(CN)63− and found to be reach 380 K. In the presence of microwave radiation, the potential of onset of the deposition of palladium is strongly shifted positive from −0.4 to +0.1 V versus SCE. The optimum potential for deposition in the presence of microwaves is −0.4 V versus SCE and the anodic stripping peak current is shown to increase linearly with deposition time. Under these conditions, the stripping peak current varies linearly with the palladium concentration down to ca. 2 μM. At concentration lower than this a logarithmic variation of the stripping peak current with concentration is observed down to ca. 0.1 μM (for 5 min pre-concentration in presence of microwave radiation).  相似文献   

19.
Electrooxidation of ethylenediaminetetraacetic acid at a thin-film boron-doped polycrystalline diamond anode is studied by cyclic voltammetry and amperometry. It is shown that diamond electrodes can be used in the analytical determination of ethylenediaminetetraacetic acid: they have low background current; the detection limit is also rather low.  相似文献   

20.
Boron-doped diamond (BDD) electrodes have been examined for the electrochemical oxidation of underivatized-nucleic acids in terms of single stranded and double stranded DNA. Cyclic voltammetry and square wave voltammetry have been used to study the oxidation reactions and to detect DNA without derivatization or hydrolysis steps. At the diamond electrode, at least two well-defined voltammetric peaks were observed for both single stranded and double stranded DNA. Diamond electrode is the first material to show a well-defined voltammetric peaks for adenine group oxidation directly in the helix structure of nucleic acid due to its wide potential window. For single stranded DNA, a third peak, related to the pyrimidine group oxidation was also observed. As-deposited diamond film with predominantly hydrogen-terminated surface exhibited superior performance over oxygen-terminated diamond in terms of sensitivity. However, by optimizing the ionic strength, sensitivity of O-terminated films could be improved. Linear calibration results have shown linearity of current with concentration in the range 0.1-8 microg mL(-1) for both guanine and adenine residues at as-deposited BDD. Detection limits (S/N = 3) of 3.7 and 10 ng mL(-1) for adenine and guanine residue in single stranded DNA, respectively, and 5.2 and 10 ng mL(-1) for adenine and guanine residue in double stranded DNA, respectively, were observed. This work shows the promising use of diamond as an electrochemical detector for direct detection of nucleic acids. The results also show the possibility of using the oxidation peak current of adenine group that is more sensitive for the direct detection of nucleicacids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号