首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Rotation of the spin of cold neutrons passing through a noncentrosymmetric single crystal is observed. This effect is caused by the Schwinger interaction of the magnetic moment of a moving neutron with the crystalline electric field in a noncentrosymmetric single crystal and depends both on the direction of neutron trajectory in the crystal and on its energy. It is shown that the characteristic magnitude of the effect for α-quartz is ?(1–2)×10?4 rad/cm over a wide wavelength range (from 2.8 to 5.5 Å) and is determined by the degree of beam monochromaticity [Δλ/λ=(2–5)×10?2 in our experiment]. This magnitude corresponds to an electric field of ?(0.5–1)×105 V/cm acting on a neutron. The measured value agrees well with the theoretical calculation.  相似文献   

2.
The detection conditions and features of direct and scattered neutron wave interference are studied on magnetized Co67Fe31V2 alloy slabs. The angular intensity distributions of neutrons passed through a sample are measured for the opposite polarization directions of the initial neutron beam. The sought-for effect that is induced by the magnetic scattering on crystal structure irregularities in specimens manifest itself by different areas of peaks “without neutron spin flip.” The ratio of these areas depends on the thermal treatment mode, sample thickness and strength of the magnetic field applied to the sample. The peaks “with neutron spin flip” are due to the mechanism of neutron wave passage through magnetononcollinear boundaries. The methods for experimental data acquisition and processing are reported as well.  相似文献   

3.
We combine the results from muon spin relaxation (μSR) and neutron scattering measurements performed on the same specimen (or system) of magnetic materials. The example on a spin glassCuMn (5%) shows that the two techniques have complementary time windows for studying dynamic spin fluctuations. In combining the results, one should note that muons and neutrons probe dynamic phenomena with different wavevectors. The results on antiferromagnetic La2CuO4−y illustrate the difference in the spatial range of static spin correlations reflected in the μSR precession frequency and the neutron Bragg peak intensity. With the examples of CeCu2.1Si2, YBa2Cu3Ox and Bi2Sr2YCu2O8+y , we point out that μSR is a superb tool for discovering static magnetic order while neutron scattering is the unique method to determine the spin structure. We emphasize that it is very fruitful to perform μSR and neutron experiments on the same specimen and to compare and combine the results for the better understanding of magnetism of various system.  相似文献   

4.
Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2–3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.  相似文献   

5.
The poor knowledge of the spin-dependent neutron scattering length of 3He has until now handicapped nuclear four body theory and the interpretation of excitations in the quantum liquid. We have measured, for the first time directly, the real part of the bound incoherent neutron scattering length, bi′ of 3He. A neutron spin echo spectrometer was used to detect pseudomagnetic precession of polarised neutrons passing through polarised 3He gas. Any absolute calibrations of sample and beam parameters were avoided using simple transmission measurements with non-polarised neutrons. The only a priory information required was the spin-dependent neutron absorption cross section of 3He. The result is bi′ = -2.365(20) fm, which reduces the prior uncertainty by a factor 30. The corresponding new value of the bound incoherent scattering cross section is σi = 1.532(12) barn. Including the known value of the coherent neutron scattering length, we obtain new values for the real parts of the free triplet and singlet neutron scattering lengths, a-′ = 7.370(58) fm and a+′ = 3.278(53) fm.  相似文献   

6.
A detailed neutron scattering study is carried out of magnetic excitations in pure La2CuO4 in the low energy region up to 15 meV, at temperatures in the vicinity of the transition temperatureT N to the paramagnetic state. In particular the question of existence of propagating spin waves in this energy region is addressed. The experimental results show that the energy region studied (up to 15 meV) is characterized by aquasielastic peak of the width of order 4 meV (at 300 K). Thus the magnetic correlation function has relaxational behavior in the studied energy region, no indications for propagating spin waves are obtained. The measured quasielastic width agrees well with existing theories. Polarized neutrons and polarization analysis are also used to identify the magnetic origin of the observed scattering.  相似文献   

7.
Based on the Dirac equation, the features of long-range electromagnetic orientational interaction of slow neutrons with even-even and even-odd nuclei are considered. This interaction is controlled by a narrow potential barrier arranged beyond the nucleus. The barrier height is U tot = 20–40 eV and depends on Z, A, and the nucleus magnetic moment μnucl. The barrier formation is associated with the ponderomotive nonlinear interaction of the anomalous neutron moment with the nucleus electric field. The barrier transparency for thermal neutrons is D(E) ≈ 0.8–0.95. For cold neutrons, the barrier transparency and their reaction cross sections with nuclei sharply decrease and, at E → 0, their cross sections tend toward zero. It was shown that the combined effect of the magnetic dipole-dipole and ponderomotive interaction of the neutron and even-odd nucleus results in the formation of removed symmetrically positioned potential wells for neutrons beyond the nucleus. The presence of these wells results in the possible existence of short-lived or virtual nucleus-neutron molecules and the “neutron halo” effect beyond the nucleus.  相似文献   

8.
Polarized 3He neutron spin filters can operate over a wide neutron energy range and provide a large angular acceptance. A compact 3He neutron spin filter system has been developed for the Multi-Axis Crystal Spectrometer at the National Institute of Standards and Technology (NIST) Center for Neutron Research. Sealed 3He cells, polarized by spin-exchange optical pumping, are used as polarizer and analyzer. The polarization of the neutrons incident on the sample is inverted by flipping the polarization of the 3He gas in the polarizer, with only a small effect on the analyzer cells. The cell fabrication process, 3He spin flipper, and the holding magnetic field are discussed and we present the results of a first on-linetest.  相似文献   

9.
The methods of neutron diffraction, X‐ray and magnetic measurements were used to study the structural and magnetic states of disordered samples of manganite La0.825Ba0.175MnO3. A disordered state was attained by irradiation with fast neutrons. It was established that the ferromagnet → spin glass‐like magnetic transformation takes place at a substitution concentration of ~6%. A magnetic state diagram of structurally disordered manganite was constructed. The magnetic state transformations are explained by the effect of localization of e g‐electrons responsible for kinetic ferromagnetic exchange. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The mechanisms and the features of the main types of nuclear ternary fission (that is, true ternary fission, in which a third particle is emitted before the rupture of the fissioning nucleus into fragments, and delayed ternary fission, in which a third particle is emitted from fission fragments going apart) are investigated within quantum-mechanical fission theory. The features of T-odd asymmetry in true ternary nuclear fission induced by cold polarized neutrons are investigated for the cases where alpha particles, prescission neutrons, and photons appear as third particles emitted by fissioning nuclei, the Coriolis interaction of the spin of the polarized fissioning nucleus with the spin of the third particle and the interference between the fission amplitudes for neutron resonances excited in the fissioning nucleus in the case of projectile-neutron capture being taken into account. For the cases where third particles emitted by fission fragments are evaporated neutrons or photons, T-odd asymmetries in delayed ternary nuclear fission induced by cold polarized neutrons are analyzed with allowance for the mechanism of pumping of large fission-fragment spins oriented orthogonally to the fragment-emission direction and with allowance for the interference between the fission amplitudes for neutron resonances.  相似文献   

11.
We calculate the cross-section of the inverse beta decay process,v e+n → p+e, in a background magnetic field which is much smaller than m p 2/e . Using exact solutions of the Dirac equation in a constant magnetic field, we find the cross-section for arbitrary polarization of the initial neutrons. The cross-section depends on the direction of the incident neutrino even when the initial neutron is assumed to be at rest and has no net polarization. Possible implications of the result are discussed.  相似文献   

12.
《Physics Reports》1988,168(5):265-303
The present paper is concerned with the physical properties of the phenomenon of spatial spin resonance (SSR) of polarized neutrons and its applications. The SU(2) group provides a mathematical tool for the theoretical discussion of SSR. The experimental work made use of the WWR-M reactor at the Leningrad Nuclear Physics Institute of the USSR Academy of Sciences.The theoretical analysis of SSR is based, in physical terms, on the concept of two distortion scales of the alternating magnetic field in the frame of reference of a moving neutron, playing the principal role in SSR. A period of the alternating magnetic field is adopted as a unit of scale. Large- scale distortions correspond to a region of the resonance spectrum in the vicinity of the principal resonance maximum, whereas small-scale distortions are mapped in zones away from this maximum.An analysis has enabled us to calculate and design resonators with which it is possible to act on specified parts of the resonance spectrum. These modified resonators are provided by the so-called “shaped meander” and “double meander” configuration, which permit the suppression of the subsidiary maxima and the high-order resonance spectrum. Some applications of these resonators are presented as devices for monochromatization of a polarized thermal neutron beam.  相似文献   

13.
We describe searches for parity and time reversal violations in the scattering of polarized neutrons from polarized and aligned165Ho targets. We have completed a search with 7.1 and 11.0 MeV neutrons for PoddTodd terms in the elastic scattering forward amplitude of the form s. (I×K), wheres is the neutron spin,I is the target spin andk is the neutron momentum vector. The target was a single crystal of holmium, polarized horizontally along itsb axis by a 1 Tesla magnetic field. The neutrons were polarized vertically. Differences in the neutron transmission were measured for neutrons with spins parallel (antiparallel) toI×k. The P,T violating analyzing powers were found to be consistent with zero at the few 10−3 level: ρP,T(7.1 MeV)=−0.88 (±2.02) x 10−3, ρP,T(11.0 MeV)=−0.4 (±2.88) x 10−3. We have also attempted to find enhancements with MeV neutrons in P-violation due to the term s\k. We are preparing an aligned target cryostat for investigations of PevenTodd terms {bd(I\k)(I×k)\s} in neutron scattering. The target will be a single crystal cylinder of165Ho cooled to 100 mK in a bath of liquid helium and rotated by a shaft from a room temperature stepping motor. The cylinder will be oriented vertically and the alignment (c) axis oriented horizontally. Warming or rotation of the sample allows one to separate effects that mimic the sought-after time reversal violating term.  相似文献   

14.
15.
Anisotropy in the angular distributions of cascade-evaporation neutrons in center-of-mass systems emitting their fission fragments is analyzed in the context of the quantum theory of fission. It is emphasized that such anisotropy is caused not by bending but by wriggling oscillations of the fissioning nucleus in the vicinity of its point of scission; these lead to the appearance of high-value spins of primary fission fragments [(J)\vec]1\vec J_1 and [(J)\vec]2\vec J_2 oriented in a plane perpendicular to direction [(n)\vec]0\vec n_0 of the axis of symmetry of the fissioning nucleus at the instant of scission. This direction coincides with the asymptotic direction of the emission of fission fragments with a high degree of accuracy. The analytical dependences of the anisotropy coefficient on the orbital momentum l and total spin j in angular distributions of cascade-evaporation neutrons are calculated using the methods developed in analyzing angular distributions of cascade-evaporation gamma quanta. The proper spin of a neutron is shown to have almost no effect on the aforesaid anisotropy coefficient due to the weak dependence of the neutron transmission coefficient T lj ([`(e)]\bar \varepsilon ) on the values of j.  相似文献   

16.
We describe an inexpensive method to obtain a highly polarized neutron beam of slow neutrons (λ = 1 – 15 Å) [1]. The high necessary field to saturate the applied soft magnetic material in the surface acting as a polarizing mirror indicates a behaviour of the magnetization in the surface different from that in the bulk material [2]. We also describe the realization of an apparatus proposed by F. Mezei [3], the behaviour of the polarized neutrons in this apparatus, and its use to get a spin echo with a neutron spectrum containing 3 – 9 Å wavelength neutrons. This spin echo is not destroyed by transmission through a nickel sheet, only the number of precessions is increased which appear in a displacement of the echo. This displacement can be used to measure the saturation magnetization of this sheet.  相似文献   

17.
A beam of 1 GeV proton coming from Dubna Nuclotron colliding with a lead target surrounded by 6 cm paraffin produces spallation neutrons. A Th-foil was kept on lead target (neutron spallation source) in a direct stream of neutrons for activation and other samples of 197Au, 209Bi, 59Co, 115In and 181Ta were irradiated by moderated beam of neutrons passing through 6 cm paraffin moderator. The gamma spectra of irradiated samples were analyzed using gamma spectrometry and DEIMOS software to measure the neutron cross-section. For this purpose neutron fluence at the positions of samples is also estimated using PREPRO software. The results of cross-sections for reactions 232Th(n, γ), 232Th(n, 2n), 197Au(n, γ), 197Au(n, α), 197Au(n, xn), 59Co(n, α), 59Co(n, xn), 181Ta(n, γ) and 181Ta(n, xn) are given in this paper. Neutronics validation of the Dubna Cascade Code is also done using cross-section data by other experiments.   相似文献   

18.
We present an imaging technique utilizing a neutron spin interferometer. Neutron spin phase contrast is achieved in spatial resolved measurements of the phase difference between two superposed neutron spin states introduced by passing through a magnetic sample. Since the phase difference of spin states parallel and anti-parallel to the magnetic field is proportional to the magnetic field integral, it is possible to record images of the internal magnetic field distribution of the sample. Taking advantage of high transmission probabilities, neutron spin phase contrast provides non-destructive images of internal magnetic structures.  相似文献   

19.
厚闪烁体内次级中子对快中子图像质量的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用编制的快中子照相数值模拟程序(FNRSC)模拟计算了入射中子能量为14 MeV时,厚度5—300 mm闪烁体内次级中子对快中子图像质量的影响,结果表明闪烁体厚度d<50mm时,次级中子对图像的影响强烈依赖于闪烁体厚度,而当d>50 mm时,次级中子对图像的影响趋于饱和.将文献中利用蒙特卡罗中子-光子输运程序(MCNP)计算的次级中子对图像影响和文中计算结果进行了对比,给出了二者存在差异的主要原因:次级中子分布对入射中子空间分布的强烈依赖性;能量沉积和荧光输出这两种计算方法对 关键词: 14 MeV中子 快中子照相 次级中子 Monte Carlo模拟  相似文献   

20.
Present experiments do not exclude that the neutron n oscillates, with an appreciable probability, into its invisible degenerate twin from a parallel world, the so-called mirror neutron n′. These oscillations were searched experimentally by monitoring the neutron losses in ultra-cold neutron traps, where they can be revealed by the magnetic field dependence of nn′ transition probability. In this work we reanalyze the experimental data acquired by the group of A.P. Serebrov at Institute Laue–Langevin, and find a dependence at more than 5σ away from the null hypothesis. This anomaly can be interpreted as oscillation of neutrons to mirror neutrons with a timescale of few seconds, in the presence of a mirror magnetic field order 0.1 G at the Earth. This result, if confirmed by future experiments, will have deepest consequences for fundamental particle physics, astrophysics and cosmology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号