首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在分子尺度上介绍了Au/TiO2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H2O的作用.在低温(<320 K), H2O起着促进CO氧化的作用, CO氧化的活性位位于金纳米颗粒与TiO2载体界面(Auδ+–Oδ––Ti)的周边. O2和H2O在金纳米颗粒与TiO2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO2.300 K时CO2的形成速率受限于O2压力与该反应机理相印证.相反,在高温(>320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O2,随后O2解离,并在金属金表面氧化CO.  相似文献   

2.
We report a detailed density functional theory (B3LYP) analysis of the gas-phase H2O2 formation from H2 and O2 on Au3, Au4+, Au5, and Au5-. We find that H2, which interacts only weakly with the Au clusters, is dissociatively added across the Au-O bond, upon interaction with AunO2. One H atom is captured by the adsorbed O2 to form the hydroperoxy intermediate (OOH), while the other H atom is captured by the Au atom. Once formed, the hydroperoxy intermediate acts as a precursor for the closed-loop catalytic cycle. An important common feature of all the pathways is that the rate-determining step of the catalytic cycle is the second H2 addition to form H2O2. The H2O2 desorption is followed by O2 addition to AunH2 to form the hydroperoxy intermediate, thus leading to the closure of the cycle. On the basis of the Gibbs free energy of activation, out of these four clusters, Au4+ is most active for the formation of the H2O2. The 0 K electronic energy of activation and the DeltaGact at the standard conditions are 12.6 and 16.6 kcal/mol respectively. The natural bond orbital charge analysis suggests that the Au clusters remain positively charged (oxidic) in almost all the stages of the cycle. This is interesting in the context of the recent experimental evidence for the activity of cationic Au in CO oxidation and water-gas shift catalysts. We have also found preliminary evidence for a correlation between the activation barrier for the first H2 addition and the O2 binding energy on the Au cluster. It suggests that the minimum activation barrier for the first H2 addition is expected for the Au clusters with 7.0-9.0 kcal/mol O2 binding energy, i.e., in the midrange of the expected interaction energy. This represents a balance between more favorable H2 dissociation when the Aun-O2 interaction is weaker and high O2 coverage when the interaction is stronger. On the basis of this work, we predict that the hydroperoxy intermediate formation can be both thermodynamically and kinetically viable only in a narrow range of the O2 binding energy (10.0-12.0 kcal/mol)-a useful estimate for computationally screening Au-cluster-based catalysts. We also show that a competitive channel for the OOH desorption exists. Thus, in propylene epoxidation both OOH radicals and H2O2 can attack the active Ti in/on the Au/TS-1 and generate the Ti-OOH sites, which can convert propylene to propylene oxide.  相似文献   

3.
Whether gold is catalytically active on its own has been hotly debated since the discovery of gold-based catalysis in the 1980s. One of the central controversies is on the O(2) activation mechanism. This work, by investigating aerobic phenylethanol oxidation on gold nanoparticles in aqueous solution, demonstrates that gold nanoparticles are capable to activate O(2) at the solid-liquid interface. Extensive density functional theory (DFT) calculations combined with the periodic continuum solvation model have been utilized to provide a complete reaction network of aerobic alcohol oxidation. We show that the adsorption of O(2) is very sensitive to the environment: the presence of water can double the O(2) adsorption energy to ~0.4 eV at commonly available edge sites of nanoparticles (~4 nm) because of its strongly polarized nature in adsorption. In alcohol oxidation, the hydroxyl bond of alcohol can break only with the help of an external base at ambient conditions, while the consequent α-C-H bond breaking occurs on pure Au, both on edges and terraces, with a reaction barrier of 0.7 eV, which is the rate-determining step. The surface H from the α-C-H bond cleavage can be easily removed by O(2) and OOH via a H(2)O(2) pathway without involving atomic O. We find that Au particles become negatively charged at the steady state because of a facile proton-shift equilibrium on surface, OOH + OH ? O(2) + H(2)O. The theoretical results are utilized to rationalize experimental findings and provide a firm basis for utilizing nanoparticle gold as aerobic oxidation catalysts in aqueous surroundings.  相似文献   

4.
Pd催化甲醇裂解制氢的反应机理   总被引:1,自引:0,他引:1  
基于密度泛函理论(DFT), 研究了甲醇在Pd(111)面上首先发生O—H键断裂的反应历程(CH3OH(s)→CH3O(s)+H(s)→CH2O(s)+2H(s)→CHO(s)+3H(s)→CO(s)+4H(s)). 优化了裂解过程中各反应物、中间体、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及各基元反应的活化能数据. 另外, 对甲醇发生C—O键断裂生成CH3(s)和OH(s)的分解过程也进行了模拟计算. 计算结果表明, O—H键的断裂(活化能为103.1 kJ·mol-1)比C—O键的断裂(活化能为249.3 kJ·mol-1)更容易; 甲醇在Pd(111)面上裂解的主要反应历程是: 甲醇首先发生O—H键的断裂, 生成甲氧基中间体(CH3O(s)), 然后甲氧基中间体再逐步脱氢生成CO(s)和H(s). 甲醇发生O—H键断裂的活化能为103.1 kJ·mol-1, 甲氧基上脱氢的活化能为106.7 kJ·mol-1, 两者均有可能是整个裂解反应的速控步骤.  相似文献   

5.
实验发现纳米金催化的CO氧化有良好的湿度增强效应,但有关机制仍不清楚.我们应用密度泛函理论研究了湿度增强效应的微观机制,以Au4团簇为例,研究了金催化CO氧化的微观机理,考察了H2O在反应中的角色和作用.计算结果表明,H2O与Au4团簇一样,在反应中扮演催化剂的角色,参与反应的进行、改变反应历程、降低反应能垒.催化循环包含4个基元步骤:O2+H2O→OOH+OH,CO+OOH→CO2+OH,CO+OH→COOH,和COOH+OH→CO2+H2O,其中自由基OOH和OH的形成是催化循环的速控步骤,其能垒为100.31kJ/mol,明显低于非水参与反应的能垒(161.41kJ/mol).目前的结果合理地解释了实验观测的CO催化氧化的湿度增强效应,给出了其微观反应机制.  相似文献   

6.
孙科举 《催化学报》2016,(10):1608-1618
近年来,纳米金催化剂独特的催化性质,特别是其优异的低温催化氧化活性,引起了人们极大的研究热情.除低温选择氧化外,在精细化学品合成、大气污染物消除、氢能的转换和利用等领域也开发出了一系列有广泛应用前景的金催化反应.此外,体相金的化学惰性和纳米金的超高活性之间差异的“鸿沟”也引起了理论工作者浓厚兴趣,试图从原理上理解体相金和纳米金活性差异的根源. CO催化氧化是最具有代表性的研究金催化活性的化学反应,本文主要综述了近十多年来金催化 CO氧化反应理论计算方面的研究工作.一般认为, CO在纳米金表面的吸附是 CO氧化反应的初始步骤.密度泛函理论研究表明, CO在金表面的吸附强度主要与被吸附金原子的配位数有关:金配位数越低, CO的吸附能越强,部分研究结果表明两者之间存在近似的线性关系.我们研究发现, CO吸附强度也与被吸附金周围配位金原子的相对位置有关,其中位于正下方的配位金原子加强 CO吸附,而位于侧位的配位金原子则弱化 CO吸附,这显然削弱了 CO吸附与金配位数线性关系的可靠性.理论研究表明,在纯金表
  面上 O2吸附强度一般很弱,只有在一些特殊结构的金团簇上才有较强的吸附,但在 Au/TiO2界面及 CeO2表面上 O2吸附较强.金表面原子氧的吸附和金的表面结构有关.我们发现,原子氧倾向于在金的表面形成一种线性的 O–Au–O结构以增加其稳定性.当金表面的氧覆盖度增大时,会形成一种金氧化物薄膜结构,其结构依赖于氧的化学势和金的表面结构.纳米金催化 CO氧化反应机理可能因体系、载体等的差异而不同.大部分理论计算结果表明,在纯金表面上 O2很难直接解离形成原子氧,因此反应机理可能是吸附的 CO先与 O2反应形成了一种 CO–O2中间体,然后解离形成 CO2.在 Au/TiO2和 Au/CeO2催化剂上 CO催化氧化机理争议很大,均有计算结果支持 LH机理和 M–vK机理.另外,根据实验上观察到了负载型纳米金能直接活化分子氧的结果,理论上也提出了分子氧先解离为原子氧再与 CO反应的氧解离机理.针对如何解离分子氧问题,人们分别提出了低配位金模型、正方形金结构模型、Ti5c模型及 Au/Ti5c模型等.我们也提出了一种独特的双直线 O–Au–O模型来理解 Au/TiO2或 Au/CeO2界面解离活化分子氧.理论计算结果表明,低配位的金,金和载体之间的电荷转移,以及金所表现出的强相对论效应对于纳米金的活性影响很大.需要特别指出的是,金的强相对论效应有助于理解金表面的 CO吸附与金配位的关系、金表面原子氧的吸附特性、金氧化物薄膜的结构和分子氧的活化等过程.我们认为,金的强相对论作用导致了体相金的化学惰性以及纳米金的活性,因此相对论效应的深入研究将有助于理解金催化 CO氧化反应机理,从而有助于深层次理解纳米金催化活性来源.  相似文献   

7.
We report a B3LYP study of a novel mechanism for propylene epoxidation using H(2) and O(2) on a neutral Au(3) cluster, including full thermodynamics and pre-exponential factors. A side-on O(2) adsorption on Au(3) is followed by dissociative addition of H(2) across one of the Au-O bonds (DeltaE(act) = 2.2 kcal/mol), forming a hydroperoxy intermediate (OOH) and a lone H atom situated on the Au(3) cluster. The more electrophilic O atom (proximal to the Au) of the Au-OOH group attacks the C=C of an approaching propylene to form propylene oxide (PO) with an activation barrier of 19.6 kcal/mol. We predict the PO desorption energy from the Au(3) cluster with residual OH and H to be 11.5 kcal/mol. The catalytic cycle can be closed in two different ways. In the first subpathway, OH and H, hosted by the same terminal Au atom, combine to form water (DeltaE(act) = 26.5 kcal/mol). We attribute rather a high activation barrier of this step to the breaking of the partial bond between the H atom and the central Au atom in the transition state. Upon water desorption (DeltaE(des) = 9.9 kcal/mol), the Au(3) is regenerated (closure). In the second subpathway, H(2) is added across the Au-OH bond to form water and another Au-H bond (DeltaE(act) = 22.6 kcal/mol). Water spontaneously desorbs to form an obtuse angle Au(3) dihydride, with one H atom on the terminal Au atom and the other bridging the same terminal Au atom and the central Au atom. A slightly activated rearrangement to a symmetric triangular Au(3) intermediate with two equivalent Au-H bonds, addition of O(2) into the Au-H bond, and rotation reforms the hydroperoxy intermediate in the main cycle. On the basis of the DeltaG(act), which contains contribution from both pre-exponetial factor and activation energy, we identify the propylene epoxidation step as the actual rate-determining step (RDS) in both the pathways. The activation barrier of the RDS (epoxidation step: DeltaE(act) = 19.6 kcal/mol) is in the same range as that in the published computationally investigated olefin epoxidation mechanisms involving Ti sites (without Au involved) indicating that isolated Au clusters and possibly Au clusters on non-Ti supports can be active for gas-phase partial oxidation, even though cooperative mechanisms involving Au clusters/Ti-based-supports may be favored.  相似文献   

8.
采用两相法合成出含活性组分Au的辛烷基硫醇单层保护Au纳米粒子(C8AuNPs)的正己烷溶胶, 用“逐次浸润”法将C8AuNPs负载在γ-Al2O3上, 经真空干燥及活化处理制得Au/γ-Al2O3催化剂. 所制得的Au催化剂前体C8AuNPs/γ-Al2O3表面Au粒子平均粒径可控制在2-3 nm范围内, 且分布比较单一; 催化剂活性评价600 h后, 其表面Au的粒径仍主要分布在2-4 nm范围内; 真空干燥温度影响Au催化剂的粒子尺寸和催化活性, 随着真空干燥温度的提高, Au纳米粒子的粒径增大. 将所制备的催化剂用于低温CO氧化反应, 催化活性评价结果表明, 经25 ℃真空干燥制得的2.5%(质量分数, w)Au/γ-Al2O3具有较高的活性和长期稳定性, 其催化CO完全转化的最低温度为-19 ℃, 在15 ℃下CO完全转化时Au/γ-Al2O3的单程寿命至少900 h; 4.0%(w) Au/γ-Al2O3在15 ℃和进料中含水条件下对CO完全氧化的单程寿命不低于2000 h, 可见催化剂具有强的抗潮湿中毒特性. 综合上述实验结果, 讨论了影响Au/γ-Al2O3催化剂活性的可能因素.  相似文献   

9.
李威  杜林颖  贾春江  司锐 《催化学报》2016,(10):1702-1711
氧化物负载的纳米金催化剂对CO氧化反应具有极高的活性,这不仅依赖于金的结构特性,也取决于氧化物载体的结构.近年来,除了氧化硅、氧化铝等惰性载体以及氧化钛、氧化铈、氧化铁等可还原性载体外,人们还致力于探索各类新型氧化物载体.另一方面,锡酸锌是具有反尖晶石结构的化合物,并且在透明导电氧化物、锂离子电池阳极材料、光电转换装置以及传感器等方面应用广泛.然而,迄今为止,锡酸锌仍未被用于负载纳米金催化剂,因此相关的构效关系作用研究也十分有限.基于此,本文采用氮气吸附-脱附实验、电感耦合等离子体原子发射光谱(ICP-AES)、X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和高分辨电镜(HRTEM)、高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)、X射线吸收精细结构谱(XAFS)和氢气程序升温脱附(H2-TPD)等手段,系统研究了锡酸锌负载的纳米金催化剂在CO氧化反应中催化性能差异的原因.首先,利用水热法制备了锡酸锌(ZTO)载体,而其织构性质可由碱(N2H4·H2O)与金属离子(Zn2+)的比例在4/1(ZTO_1)、8/1(ZTO_2)和16/1(ZTO_3)之间进行调节.结果发现, ZTO_2具有最大的孔体积(0.223 cm3/g)和最窄的孔径分布.再采用沉积沉淀法将0.7 wt% Au负载于其上,得到金-锡酸锌(Au_ZTO)催化剂. ICP-AES测得样品中Au含量在0.57-0.59 wt%,与投料比接近. CO氧化反应结果显示, Au_ZTO_1和Au_ZTO_2的表观活化能相同,但后者的活性更高;而Au_ZTO_3在220°C以下没有活性,催化性能最差,与纯锡酸锌载体相当. XRD结果显示,反应过程中ZTO晶相、晶胞参数及晶粒尺寸变化不明显; TEM和HRTEM分析表明,载体ZTO在反应前后均为多面体形貌,平均颗粒尺寸在12-16 nm; XPS结果验证了Zn2+和Sn4+离子是新鲜和反应后样品中载体金属的存在形式; HAADF-STEM探测到所有样品中均含有1-2 nm的Au粒子; XAFS结果表明, Au以Au0形式存在,并且在Au_ZTO_3中Au平均粒径大于4 nm,而其它两样品约为2 nm. H2-TPR结果表明,金的引入对ZTO载体耗氢量影响不大,但还原峰温度向低温移动;金属-载体相互作用强弱与催化活性高低具有正相关性,即Au_ZTO_2> Au_ZTO_1>> Au_ZTO_3.这是由于不同织构性质的锡酸锌载体对于纳米金活性物种的稳定作用不同所致,具有最大孔体积和最窄孔径分布的ZTO_2负载的金纳米颗粒表现出最高活性.  相似文献   

10.
The catalytic oxidation of CO was performed over Au/TiO(2) under UV irradiation in the presence of H(2) in different reaction systems. It was found that the introduction of H(2) enhanced the CO thermocatalytic oxidation in a CO pre-introduced system (CO/O(2)vs. CO/H(2)/O(2)), but suppressed that in an O(2) pre-introduced (O(2)/CO vs. O(2)/H(2)/CO) system. Although the CO oxidation in both CO/H(2)/O(2) and O(2)/H(2)/CO systems could be remarkably enhanced under UV irradiation, the oxidation of H(2) was suppressed under UV irradiation. It was proposed that the dissociative chemisorption H ([triple bond]Ti-H) at surface oxygen vacancy sites of TiO(2) could act as both the electron-acceptors for the photogeneration electrons and the electron-donors for the chemisorbed O(2) at TiO(2), and thus enhance the CO oxidation during the coinstantaneous process of thermocatalysis and photocatalysis. The suppression of H(2) thermocatalytic oxidation under UV irradiation might be ascribed to the electron transfer effect, i.e., the dissociative chemisorption H on Au (Au-H) could be desorbed at the H(2) molecule via accepting the photogenerated electrons from TiO(2).  相似文献   

11.
This paper reveals the fact that the O adatoms (O(ad)) adsorbed on the 5-fold Ti rows of rutile TiO(2)(110) react with CO to form CO(2) at room temperature and the oxidation reaction is pronouncedly enhanced by Au nano-clusters deposited on the above O-rich TiO(2)(110) surfaces. The optimum activity is obtained for 2D clusters with a lateral size of ~1.5 nm and two-atomic layer height corresponding to ~50 Au atoms∕cluster. This strong activity emerging is attributed to an electronic charge transfer from Au clusters to O-rich TiO(2)(110) supports observed clearly by work function measurement, which results in an interface dipole. The interface dipoles lower the potential barrier for dissociative O(2) adsorption on the surface and also enhance the reaction of CO with the O(ad) atoms to form CO(2) owing to the electric field of the interface dipoles, which generate an attractive force upon polar CO molecules and thus prolong the duration time on the Au nano-clusters. This electric field is screened by the valence electrons of Au clusters except near the perimeter interfaces, thereby the activity is diminished for three-dimensional clusters with a larger size.  相似文献   

12.
采用沉积-沉淀法制备了Al2O3和MOx-Al2O3(M=Fe,Zn)负载型金催化剂.室温下对其CO氧化及富氢条件下CO选择氧化催化活性进行了广泛的研究.催化剂床层温度由热电偶直接测定.催化剂表面温度与O2/CO的体积比以及CO和H2的浓度密切相关.在CO氧化反应过程中Au/Al2O3催化剂的温度可高达170°C,添加FeOx可使其降至55°C.利用一系列仪器(X射线衍射仪,X射线光电子能谱仪和透射电镜等)对催化剂的结构进行了表征.结果显示Al2O3负载型金催化剂热点的形成可以通过添加合适的助剂很好地控制.助剂的添加能够使催化剂活性中心由金属态Au变为AuIII,从而导致了CO选择氧化反应机理不同.  相似文献   

13.
The reaction mechanism of water formation from H2 and O2 was studied over a series of silica-supported gold nanoparticles. The metal particle size distributions were estimated with TEM and XRD measurements. Hydrogen and oxygen adsorption calorimetry was used to probe the nature and properties of surface species formed by these molecules. DFT calculations with Au5, Au13, and Au55 clusters and with Au(111) and Au(211) periodic slabs were performed to estimate the thermodynamic stability and reactivity of surface species. Kinetic measurements were performed by varying the reactant partial pressures at 433 K and by varying the temperature from 383 to 483 K at 2.5 kPa of O2 and 5 kPa of H2. The measured apparent power law kinetic parameters were similar for all catalysts in this study: hydrogen order of 0.7-0.8, oxygen order of 0.1-0.2, and activation energy of 37-41 kJ/mol. Catalysts with Si-MFI (Silicalite-1) and Ti-MFI (TS-1 with 1 wt % Ti) exhibited similar activities. The activities of these catalysts with the MFI crystalline supports were 60-70 times higher than that of an analogous catalyst with an amorphous silica support. Water addition in the inlet stream at 3 vol % did not affect the reaction rates. The mechanism of water formation over gold is proposed to proceed through the formation of OOH and H2O2 intermediates. A rate expression derived based on this mechanism accurately describes the experimental kinetic data. The higher activity of the MFI-supported catalysts is attributed to a higher concentration of gold particles comparable in size to Au13, which can fit inside MFI pores. DFT results suggest that such intermediate-size gold particles are most reactive toward water formation. Smaller particles are proposed to be less reactive due to the instability of the OOH intermediate whereas larger particles are less reactive due to the instability of adsorbed oxygen.  相似文献   

14.
利用热脱附谱和高分辨能量损失谱技术研究了乙醇在Rh(100)表面的吸会和分解过程,结果表明,130时Rh(100)面暴露乙醇,表面首先形成化学附层,随乙醇暴露增加,表面出现多层凝聚态,表面升温至150K,吸附乙醇从Rh(100)表面脱附,同时部分化学吸附乙醇分子发生羟基断裂,生成表面乙氧基,进一步升谩,表面乙氧基脱氢分解,其分解的主要途径是发生甲基脱氧,β-C与表面发生作用,生成一种含氧的金属有机  相似文献   

15.
负载型纳米金催化剂由于其独特的化学性质在一系列氧化反应中受到广泛关注.其中,一氧化碳氧化不仅在实际应用领域(如汽车尾气处理)发挥重要作用,而且作为一种理想的模型反应用以深入研究和理解催化剂的构效关系.为了获得高效的纳米金催化剂,我们需要把金负载到载体上,载体不仅为金的分散提供必要的表面,而且还会和金产生相互作用,这种金...  相似文献   

16.
The present study is focused on the kinetic investigation of the effects of H(2) and CO(2) on the rates related to the elementary steps of CO sorption over Au/gamma-Al(2)O(3). The kinetic study was carried out in a wide temperature range (50-300 degrees C) by the novel methodology of reversed flow gas chromatography (RF-GC). The findings of preliminary coadsorption studies of CO with H(2), O(2) and O(2)+H(2) indicate that a reductive pre-treatment of the Au catalyst with a mixture of CO in excess of H(2) can be more beneficial concerning CO oxidation activity at low temperatures, compared to the usual reduction in a diluted hydrogen atmosphere, most probably due to the easier activation of oxygen molecules. At high temperatures the rate of reversed water gas shift reaction becomes significant resulting in H(2) and CO(2) consumption. The kinetic findings indicate that hydrogen strongly influences the adsorption of CO over Au/gamma-Al(2)O(3), by enhancing CO adsorption at lower temperatures and weakening the strength CO binding. On the other hand, CO(2) adsorption competes that of CO under hydrogen-rich conditions. However, the strength of CO(2) bonding is higher compared to that of CO and it further increases at higher temperatures, in agreement with the observed deactivation of the selective CO oxidation in the presence of CO(2).  相似文献   

17.
Interactions between oxygen and gold surfaces are fundamentally important in diverse areas of science and technology. In this work, an oxygen dimer structure was observed and identified on gold nanoparticles in catalytic decomposition of hydrogen peroxide to oxygen and water. This structure, which is different from isolated atomic or molecular oxygen surface structures, was observed with in situ surface‐enhanced Raman spectroscopic measurements and identified with density functional theory calculations. The experimental measurements were performed using monodisperse 5, 50 and 400 nm gold particles supported on silica with liquid‐phase hydrogen and deuterium peroxides at multiple pH values. The calculations show that on surfaces with coordinatively unsaturated gold atoms, two oxygen atoms preferentially share a gold atom with a bond distance of 0.194–0.196 nm and additionally bind to two other surface gold atoms with a larger bond distance of 0.203–0.213 nm, forming an Au‐O‐Au‐O‐Au structure. The formation of this structure depends on reaction rates and conditions.  相似文献   

18.
本文利用旋转圆盘电极系统研究了酸性介质中H2O2在Au(100)和Au(111)电极表面的电化学行为. 实验发现在Au电极上H2O2难以发生还原,但是当电位稍微正于H2O2氧化为O2的平衡电势时即可发生氧化. 在Au(111)上H2O2氧化的起始电位比在Au(100)正0.1 V左右. Au(100)上的双桥位位点能增强反应中间体*OOH的吸附,可能是导致Au(100)上H2O2氧化反应超电势比Au(111)低的主要原因. 在较正电位区(E>1.2 V), 当电极表面被氧物种覆盖时,H2O2在两个电极上的氧化都会受到一定程度的抑制,这种影响在Au(111)上比Au(100)上更加明显,这与Au(111)上氧物种的生成与逆向还原可逆性差的趋势一致. 最后还将Au与Pt单晶电极上H2O2氧化的行为进行了对比分析.  相似文献   

19.
Mononuclear gold complexes synthesized from AuIII(CH3)2(acac) in zeolite NaY were characterized by time-resolved X-ray absorption spectroscopy and infrared spectroscopy as they catalyzed CO oxidation at 298 K and 760 Torr in flow systems. Initial contact with a CO + O2 mixture led to the rapid formation of cationic gold complexes in which Au was bonded to approximately two zeolite O atoms, on average. Further contact with CO + O2 led to breaking of an Au-surface oxygen bond, giving a gold carbonyl anchored to approximately one O atom. The process was reversed in the absence of CO and O2.  相似文献   

20.
Using density functional calculations, we demonstrate a catalytic reaction path with activation barriers of less than 0.5 eV for CO oxidation on the neutral and unsupported icosahedral nanoclusters of Au(55), Ag(55), and Au(25)Ag(30). Both CO and O(2) adsorb more strongly on these clusters than on the corresponding bulk surfaces. The reaction path consists of an intermediate involving OOCO complex through which the coadsorption energy of CO and O(2) on these clusters is expected to play an important role in the reaction. Based on the studies for the Au and Ag nanoclusters, a model alloy nanocluster of Au(25)Ag(30) was designed to provide a larger coadsorption energy for CO and O(2) and was anticipated to be a better catalyst for CO oxidation from energetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号