首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the MH(x)Cl(y) compounds (M = Si, P, As, and Sb) and for a number of trivalent, tetravalent, and pentavalent fluorides (SbF(3), BiF(3), GeF(4), SnF(4), PbF(4), AsF(5), SbF(5)) from coupled cluster theory (CCSD(T)) calculations using correlation consistent basis sets and extrapolation to the complete basis set limit. Small-core, relativistic effective core potentials were used for the heavier elements (Ge, As, Sn, Sb, Pb, and Bi), including correlation of the outer core electrons. Additional scalar relativistic (for the lighter elements) and atomic spin-orbit corrections are included in order to achieve near chemical accuracy of ±1.5 kcal/mol. Vibrational zero point energies were computed from scaled harmonic frequencies at the second order M?ller-Plesset perturbation theory (MP2) level where possible. Agreement between theory and the available experimental data is excellent. We present a revised heat of formation of the antimony atom in the gas phase. The calculated values will be of use in predicting the behavior of chemical vapor deposition systems.  相似文献   

2.
RCCSD(T) and UCCSD(T)-F12x calculations were performed on AsX(n) molecules, where X = H, F or Cl, and n = 1, 2 or 3, and related species, in order to evaluate their enthalpies of formation (ΔH(f)(?)). The recommended ΔH(f)(?) values obtained from the present investigation are AsH, 57.7(2); AsF, -7.9(3); AsCl, 27.2(4); AsH(2), 39.8(4); AsF(2), -96.6(9); AsCl(2), -17.8(10); AsH(3), 17.1(4); AsF(3)-196.0(5) and AsCl(3), -59.1(27) kcal mole(-1). These values are anchored only on one thermodynamic quantity, namely, ΔH(f)(?)(As) (= 70.3 kcal mole(-1)). In the calculations, the fully-relativistic small-core effective core potential (ECP10MDF) was used for As. Contributions from outer core correlation of As 3d(10) electrons were computed explicitly in both RCCSD(T) and UCCSD(T)-F12 calculations with additional tight basis functions designed for As 3d(10) electrons. Basis sets of up to augmented correlation-consistent polarized valence quintuple-zeta (aug-cc-pV5Z) quality were used in RCCSD(T) calculations and computed relative electronic energies were extrapolated to the complete basis set (CBS) limit. For the simplified, explicitly correlated UCCSD(T)-F12x calculations, basis sets of up to quadruple-zeta (QZ) quality were employed. Based on the RCCSD(T)/CBS benchmark values, the reliability of available theoretical and experimental values have been assessed.  相似文献   

3.
The heats of formation of saturated and unsaturated diaminocarbenes (imadazol(in)-2-ylidenes) have been calculated by using high levels of ab initio electronic structure theory. The calculations were done at the coupled cluster level through noniterative triple excitations with augmented correlation consistent basis sets up through quadruple. In addition, four other corrections were applied to the frozen core atomization energies: (1) a zero point vibrational correction; (2) a core/valence correlation correction; (3) a scalar relativistic correction; (4) a first-order atomic spin-orbit correction. The value of DeltaHf( 298) for the unsaturated carbene 1 is calculated to be 56.4 kcal/mol. The value of DeltaHf( 298) for the unsaturated triplet carbene (3)1 is calculated to be 142.8 kcal/mol, giving a singlet-triplet splitting of 86.4 kcal/mol. Addition of a proton to 1 forms 3 with DeltaHf( 298)(3) = 171.6 kcal/mol with a proton affinity for 1 of 250.5 kcal/mol at 298 K. Addition of a hydrogen atom to 1 forms 4 with DeltaHf( 298)(4) = 72.7 kcal/mol and a C-H bond energy of 35.8 kcal/mol at 298 K. Addition of H- to 1 gives 5 with DeltaHf( 298)(5) = 81.2 kcal/mol and 5 is not stable with respect to loss of an electron to form 4. Addition of H2 to the carbene center forms 6 with DeltaHf( 298)(6) = 41.5 kcal/mol and a heat of hydrogenation at 298 K of -14.9 kcal/mol. The value of DeltaHf( 298) for the saturated carbene 7 (obtained by adding H2 to the C=C bond of 1) is 47.4 kcal/mol. Hydrogenation of 7 to form the fully saturated imidazolidine, 8, gives DeltaHf( 298)(8) = 14.8 kcal/mol and a heat of hydrogenation at 298 K of -32.6 kcal/mol. The estimated error bars for the calculated heats of formation are +/-1.0 kcal/mol.  相似文献   

4.
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for XeF(+), XeF(-), XeF(2), XeF(4), XeF(5)(-), and XeF(6) from coupled cluster theory (CCSD(T)) calculations with new correlation-consistent basis sets for Xe. To achieve near chemical accuracy (+/-1 kcal/mol), up to four corrections were added to the complete basis set binding energies based on frozen core coupled cluster theory energies: a correction for core-valence effects, a correction for scalar relativistic effects, a correction for first-order atomic spin-orbit effects, and in some cases, a second-order spin-orbit correction. Vibrational zero-point energies were computed at the coupled cluster level of theory. The structure of XeF(6) is difficult to obtain with the C(3)(v)() and O(h)() structures having essentially the same energy. The O(h)() structure is only 0.19 kcal/mol below the C(3)(v)() one at the CCSD(T)/CBS level using an approximate geometry for the C(3)(v)() structure. With an optimized C(3)(v)() geometry, the C(3)(v)() structure would probably become slightly lower in energy than the O(h)() one. The calculated heats of formation for the neutral XeF(n)() fluorides are less negative than the experimental values from the equilibrium measurements by 2.0, 7.7, and 12.2 kcal/mol for n = 2, 4, and 6, respectively. For the experimental values, derived from the photoionization measurements, this discrepancy becomes even larger, suggesting a need for a redetermination of the experimental values. Evidence is presented for the fluxionality of XeF(6) caused by the presence of a sterically active, free valence electron pair on Xe.  相似文献   

5.
Ab initio electronic structure calculations are reported for S2, and its ions S2+ and S2-. Geometric parameters are calculated using the singles and doubles coupled cluster method, including a perturbational correction for connected triple excitation, together with systematic sequences of correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. Energetic and structural properties of S2 and the S2 cation and anion are reported. The heat of formation of S2 (3Sigmag-) at 0 K in the gas phase is predicted to be 29.8 kcal/mol from the average of CBS two extrapolation procedures, less than the experimental heat of formation of S2 of 30.66+/-0.07 kcal/mol. The 0 K adiabatic ionization potential and electron affinity are predicted to be 9.37 and 1.68 eV, respectively.  相似文献   

6.
The methyl cation affinities of the rare gases have been calculated at 0 and 298 K by using coupled cluster theory including noniterative, quasiperturbative triple excitations with the new correlation-consistent basis sets for Xe up through aug-cc-pV5Z in some cases. To achieve near chemical accuracy (+/-1 kcal/mol) in the thermodynamic properties, we add to the estimated complete basis set valence binding energies, based on frozen core coupled cluster theory energies, two corrections: (1) a core/valence correction and (2) a scalar relativistic correction. Vibrational zero-point energies were computed at the coupled cluster level of theory at the CCSD(T)/aug-cc-pVDZ level. The calculated rare gas methyl cation affinities (MCA in kcal/mol) at 298 K are the following: MCA(He) = 1.7, MCA(Ne) = 2.5, MCA(Ar) = 16.9, MCA(Kr) = 25.5, and MCA(Xe) = 36.6. Because of the importance of the MCA(N(2)) in the experimental measurements of the MCA scale, we calculated a number of quantities associated with CH(3)N(2)(+) and CH(2)N(2). The calculated values for diazomethane at 298 K are: DeltaH(f)(CH(2)N(2)) = 65.3 kcal/mol, PA(CH(2)N(2)) = 211.9 kcal/mol, and MCA(N(2)) = 43.2 kcal/mol.  相似文献   

7.
Total energies, optimized geometries, and vibrational frequencies of SBr and HSBr have been evaluated at the coupled cluster level of theory with the correlation consistent basis sets. Extrapolated to the complete basis set limit and with corrections for core-valence, scalar relativistic, and spin-orbit effects, atomization energies were computed and then combined with the experimental heats of formation of the atomic species to generate very accurate heats of formation for the species SBr and HSBr. For SBr, we predict 37.45 and 36.07 kcal/mol for DeltaHf(0 K) and DeltaHf (298.15 K), respectively, in very good agreement with the inferred experimental values of 37.98 and 36.15 kcal/mol. For HSBr, the estimate turns out to be 10.38 and 8.29 kcal/mol for DeltaHf (0 K) and DeltaHf (298.15 K), respectively. Using the more recent HBrO experimental heat of formation at 298.15 K of Lock et al., [J. Phys. Chem. 100, 7972 (1996)] the inferred experimental value for HSBr is predicted to be 8.15 kcal/mol, compared with 8.65 kcal/mol derived from the data of Ruscic and Berkowitz [J. Chem. Phys. 101, 7795 (1994)]. Considering the better agreement of the result with that predicted using the experimental value of DeltaHf(298.15 K) of Lock et al., the author also supports the suggestion made by Denis [J. Phys. Chem. A. 110, 5887 (2006)] that the result of Lock et al. should be preferred over the one of Ruscic and Berkowitz. For DeltaHf(0 K), the author found 10.38 and 10.56 kcal/mol, respectively, for the theoretical and inferred experimental estimates.  相似文献   

8.
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes.  相似文献   

9.
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for KrF+, KrF-, KrF2, KrF3+, KrF4, KrF5+, and KrF6 from coupled-cluster theory (CCSD(T)) calculations with effective core potential correlation-consistent basis sets for krypton. To achieve near chemical accuracy (+/-1 kcal/mol), three corrections were added to the complete basis set binding energies based on frozen core coupled-cluster theory energies: a correction for core-valence effects, a correction for scalar relativistic effects, and a correction for first-order atomic spin-orbit effects. Vibrational zero point energies were computed at the coupled-cluster level of theory. The calculated value for the heat of formation of KrF2 is in excellent agreement with the experimental value. Contrary to the analogous xenon fluorides, KrF2, KrF4, and KrF6 are predicted to be thermodynamically unstable with respect to loss of F2. An analysis of the energetics of KrF4 and KrF6 with respect to fluorine atom loss together with calculations of the transition states for the intramolecular loss of F2 show that fluorine atom loss is the limiting factor determining the kinetic stabilities of these molecules. Whereas KrF4 possesses a marginal energy barrier of 10 kcal/mol toward fluorine atom loss and might be stable at moderately low temperatures, the corresponding barrier in KrF6 is only 0.9 kcal/mol, suggesting that it could exist only at very low temperatures. Although the simultaneous reactions of either two or four fluorine atoms with KrF2 to give KrF4 or KrF6, respectively, are exothermic, they do not represent feasible synthetic approaches because the attack of the fluorine ligands of KrF2 by the fluorine atoms, resulting in F2 abstraction, is thermodynamically favored over oxidative fluorination of the krypton central atom. Therefore, KrF6 could exist only at very low temperatures, and even the preparation of KrF4 will be extremely difficult.  相似文献   

10.
Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: DeltaH0r(C2H4,3A1) = 80.1 at 0 K and 78.5 at 298 K, and DeltaH0t(CH3CH,3A' ') = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +/-1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as DeltaES-T,vert = 104.1 and DeltaES-T,adia = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +/- 0.3 and 66.4 +/- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 +/- 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is DeltaES-T,adia(C2H2) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is DeltaH0tC2H2,3B2) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by approximately 7 to 8 kcal/mol. For vinylidene, we predict DeltaH0t(H2CC,1A1) = 98.8 kcal/mol at 298 K (exptl. 100.3 +/- 4.0), DeltaH0t(H2CC,3B2) = 146.2 at 298 K, and an energy gap DeltaES-T-adia(H2CC) = 47.7 kcal/mol.  相似文献   

11.
In continuing pursuit of thermochemical accuracy to the level of 0.1 kcal mol(-1), the heats of formation of NCO, HNCO, HOCN, HCNO, and HONC have been rigorously determined using state-of-the-art ab initio electronic structure theory, including conventional coupled cluster methods [coupled cluster singles and doubles (CCSD), CCSD with perturbative triples (CCSD(T)), and full coupled cluster through triple excitations (CCSDT)] with large basis sets, conjoined in cases with explicitly correlated MP2-R12/A computations. Limits of valence and all-electron correlation energies were extrapolated via focal point analysis using correlation consistent basis sets of the form cc-pVXZ (X=2-6) and cc-pCVXZ (X=2-5), respectively. In order to reach subchemical accuracy targets, core correlation, spin-orbit coupling, special relativity, the diagonal Born-Oppenheimer correction, and anharmonicity in zero-point vibrational energies were accounted for. Various coupled cluster schemes for partially including connected quadruple excitations were also explored, although none of these approaches gave reliable improvements over CCSDT theory. Based on numerous, independent thermochemical paths, each designed to balance residual ab initio errors, our final proposals are DeltaH(f,0) ( composite function )(NCO)=+30.5, DeltaH(f,0) ( composite function )(HNCO)=-27.6, DeltaH(f,0) ( composite function )(HOCN)=-3.1, DeltaH(f,0) ( composite function )(HCNO)=+40.9, and DeltaH(f,0) ( composite function )(HONC)=+56.3 kcal mol(-1). The internal consistency and convergence behavior of the data suggests accuracies of +/-0.2 kcal mol(-1) in these predictions, except perhaps in the HCNO case. However, the possibility of somewhat larger systematic errors cannot be excluded, and the need for CCSDTQ [full coupled cluster through quadruple excitations] computations to eliminate remaining uncertainties is apparent.  相似文献   

12.
Accurate calculations of the low-lying singlet and triplet electronic states of thiozone, S(3), have been carried out using large multireference configuration interaction wave functions. Cuts of the full potential energy surfaces along the stretching and bending coordinates have been presented, together with the vertical excitation spectra. The strong experimentally observed absorption around 395 nm is assigned to the 1 (1)B(2) state, which correlates to ground state products. Absorption at wavelengths shorter than 260 nm is predicted to lead to singlet excited state products, S(2) (a (1)Delta(g))+S((1)D). The spectroscopic properties of the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) electronic states of the S(2) radical have also been accurately characterized in this work. The investigations of the low-lying electronic states were accompanied by accurate ground state coupled cluster calculations of the thermochemistry of both S(2) and S(3) using large correlation consistent basis sets with corrections for core-valence correlation, scalar relativity, and atomic spin-orbit effects. Resulting values for D(0)(S(2)+S) and SigmaD(0) for S(3) are predicted to be 61.3 and 162.7 kcal/mol, respectively, with conservative uncertainties of +/-1 kcal/mol. Analogous calculations predict the C(2v)-D(3h) (open-cyclic) isomerization energy of S(3) to be 4.4+/-0.5 kcal/mol.  相似文献   

13.
The celebrated C(2)H(5)+O(2) reaction is an archetype for hydrocarbon combustion, and the critical step in the process is the concerted elimination of HO(2) from the ethylperoxy intermediate (C(2)H(5)O(2)). Master equation kinetic models fitted to measured reaction rates place the concerted elimination barrier 3.0 kcal mol(-1) below the C(2)H(5)+O(2) reactants, whereas the best previous electronic structure computations yield a barrier more than 2.0 kcal mol(-1) higher. We resolve this discrepancy here by means of the most rigorous computations to date, using focal point methods to converge on the ab initio limit. Explicit computations were executed with basis sets as large as cc-pV5Z and correlation treatments as extensive as coupled cluster through full triples with a perturbative inclusion of quadruple excitations [CCSDT(Q)]. The final predicted barrier is -3.0 kcal mol(-1), bringing the concerted elimination mechanism into precise agreement with experiment. This work demonstrates that higher correlation treatments such as CCSDT(Q) are not only feasible on systems of chemical interest but are necessary to supply accuracy beyond 0.5 kcal mol(-1), which is not obtained with the "gold standard" CCSD(T) method. Finally, we compute the enthalpy of formation of C(2)H(5)O(2) to be Delta(f)H degrees (298 K)=-5.3+/-0.5 kcal mol(-1) and Delta(f)H degrees (0 K)=-1.5+/-0.5 kcal mol(-1).  相似文献   

14.
A coupled cluster composite approach has been used to accurately determine the spectroscopic constants, bond dissociation energies, and heats of formation for the X1(2)II(3/2) states of the halogen oxides ClO, BrO, and IO, as well as their negative ions ClO-, BrO-, and IO-. After determining the frozen core, complete basis set (CBS) limit CCSD(T) values, corrections were added for core-valence correlation, relativistic effects (scalar and spin-orbit), the pseudopotential approximation (BrO and IO), iterative connected triple excitations (CCSDT), and iterative quadruples (CCSDTQ). The final ab initio equilibrium bond lengths and harmonic frequencies for ClO and BrO differ from their accurate experimental values by an average of just 0.0005 A and 0.8 cm-1, respectively. The bond length of IO is overestimated by 0.0047 A, presumably due to an underestimation of molecular spin-orbit coupling effects. Spectroscopic constants for the spin-orbit excited X2(2)III(1/2) states are also reported for each species. The predicted bond lengths and harmonic frequencies for the closed-shell anions are expected to be accurate to within about 0.001 A and 2 cm-1, respectively. The dissociation energies of the radicals have been determined by both direct calculation and through use of negative ion thermochemical cycles, which made use of a small amount of accurate experimental data. The resulting values of D0, 63.5, 55.8, and 54.2 kcal/mol for ClO, BrO, and IO, respectively, are the most accurate ab initio values to date, and those for ClO and BrO differ from their experimental values by just 0.1 kcal/mol. These dissociation energies lead to heats of formation, DeltaH(f) (298 K), of 24.2 +/- 0.3, 29.6 +/- 0.4, and 29.9 +/- 0.6 kcal/mol for ClO, BrO, and IO, respectively. Also, the final calculated electron affinities are all within 0.2 kcal/mol of their experimental values. Improved pseudopotential parameters for the iodine atom are also reported, together with revised correlation consistent basis sets for this atom.  相似文献   

15.
Seven different types of Slater type basis sets for the elements H (Z = 1) up to E118 (Z = 118), ranging from a double zeta valence quality up to a quadruple zeta valence quality, are tested in their performance in neutral atomic and diatomic oxide calculations. The exponents of the Slater type functions are optimized for the use in (scalar relativistic) zeroth-order regular approximated (ZORA) equations. Atomic tests reveal that, on average, the absolute basis set error of 0.03 kcal/mol in the density functional calculation of the valence spinor energies of the neutral atoms with the largest all electron basis set of quadruple zeta quality is lower than the average absolute difference of 0.16 kcal/mol in these valence spinor energies if one compares the results of ZORA equation with those of the fully relativistic Dirac equation. This average absolute basis set error increases to about 1 kcal/mol for the all electron basis sets of triple zeta valence quality, and to approximately 4 kcal/mol for the all electron basis sets of double zeta quality. The molecular tests reveal that, on average, the calculated atomization energies of 118 neutral diatomic oxides MO, where the nuclear charge Z of M ranges from Z = 1-118, with the all electron basis sets of triple zeta quality with two polarization functions added are within 1-2 kcal/mol of the benchmark results with the much larger all electron basis sets, which are of quadruple zeta valence quality with four polarization functions added. The accuracy is reduced to about 4-5 kcal/mol if only one polarization function is used in the triple zeta basis sets, and further reduced to approximately 20 kcal/mol if the all electron basis sets of double zeta quality are used. The inclusion of g-type STOs to the large benchmark basis sets had an effect of less than 1 kcal/mol in the calculation of the atomization energies of the group 2 and group 14 diatomic oxides. The basis sets that are optimized for calculations using the frozen core approximation (frozen core basis sets) have a restricted basis set in the core region compared to the all electron basis sets. On average, the use of these frozen core basis sets give atomic basis set errors that are approximately twice as large as the corresponding all electron basis set errors and molecular atomization energies that are close to the corresponding all electron results. Only if spin-orbit coupling is included in the frozen core calculations larger errors are found, especially for the heavier elements, due to the additional approximation that is made that the basis functions are orthogonalized on scalar relativistic core orbitals.  相似文献   

16.
A composite coupled cluster methodology is used with systematic sequences of correlation consistent basis sets to accurately determine the structure, vibrational frequencies, and isotopic shifts for trans-HNNO ((2)A'), cis-HNNO ((2)A'), and ONHN ((2)A'). Anharmonic corrections to the vibrational frequencies and rotational constants are obtained using density functional theory. With basis sets larger than double-zeta, large differences between restricted open-shell Hartree-Fock (ROHF)-based and unrestricted Hartree-Fock (UHF)-based coupled cluster harmonic frequencies are calculated, with the UHF-based ones judged to be more reliable based on an analysis of the orbital hessian eigenvalues. The final calculated anharmonic vibrational band origins are generally in good agreement with the experimental values measured in rare gas matrices. The calculation of the vibrational band origins of the isovalent NO(2) molecule at similar levels of theory exhibits an agreement with experiment to within a few wavenumbers. In the latter case, however, a ROHF treatment was required since the UHF approach failed to provide realistic frequencies for the antisymmetric stretching mode. The heat of formation at 0 K of trans-HNNO is calculated to be 50.5 ± 0.5 kcal∕mol using a very similar composite coupled cluster methodology as in the structure and harmonic frequency determinations.  相似文献   

17.
Accurate 0 K enthalpies have been calculated for reactions of mercury with a series of small iodine-containing molecules (I2, IBr, ICl, and IO). The calculations have been carried out with the coupled cluster singles and doubles method with a perturbative correction for connected triple excitations [CCSD(T)] using sequences of correlation consistent basis sets and accurate relativistic pseudopotentials. Corrections have been included to account for core-valence correlation, spin-orbit coupling, scalar relativity, and the Lamb shift. In a few cases coupled cluster calculations with iterative triple (CCSDT) and quadruple (CCSDTQ) excitations have been carried out to estimate the effects of higher order electron correlation. The pseudopotential calculations have also been compared to all electron calculations using second- and third-order Douglas-Kroll-Hess Hamiltonians. In addition to the reaction enthalpies, heats of formation, bond lengths, and harmonic vibrational frequencies have been calculated for the stable triatomic products HgI2, HgIBr, HgICl, and HgIO. Accurate dissociation energies, equilibrium bond lengths, and harmonic vibrational frequencies have also been calculated for each of the diatomic molecules involved in this study (HgI, HgBr, HgCl, HgO, I2, IBr, ICl, and IO). The reported enthalpies are expected to have accuracies of 1 kcal/mol or better.  相似文献   

18.
19.
Recently reported energy-consistent relativistic pseudopotentials have been used with series of matching correlation consistent basis sets in benchmark calculations of various atomic and molecular properties. The basis set convergence of the 4d metal electron affinities and 5s2-->5s0 excitation energies are reported at the CCSD(T) level of theory, and the effects of valence and 4s4p correlation are investigated. In addition the impact of correlating the low-lying 3d electrons was also studied in all-electron Douglas-Kroll-Hess (DKH) calculations, which also included the ionization potentials and 5s2-->5s1 excitation energies. For all four atomic properties, higher order coupled cluster calculations through CCSDTQ are reported. The final calculated values are generally all within 1 kcal/mol of experiment. A notable exception is the ionization potential of Tc, the currently accepted experimental value of which is suggested to be too high by about 3 kcal/mol. Molecular calculations are also reported for the low-lying electronic states of ZrO and RuF, as well as the ground electronic state of Pd2. The effects of spin-orbit coupling are investigated for these cases in pseudopotential calculations. Wherever possible, the pseudopotential results have been calibrated against DKH calculations with correlation consistent basis sets of triple-zeta quality. In all cases the calculated data for these species are in very good agreement with experiment. In particular, the correct electronic ground state for the RuF molecule (4Phi92) was obtained, which was made possible by utilizing systematic sequences of correlation consistent basis sets.  相似文献   

20.
We present a detailed theoretical investigation on the dissociation energy of CuO(+), carried out by means of coupled cluster theory, the multireference averaged coupled pair functional (MR-ACPF) approach, diffusion quantum Monte Carlo (DMC), and density functional theory (DFT). At the respective extrapolated basis set limits, most post-Hartree-Fock approaches agree within a narrow error margin on a D(e) value of 26.0 kcal mol(-1) [coupled-cluster singles and doubles level augmented by perturbative triples corrections, CCSD(T)], 25.8 kcal mol(-1) (CCSDTQ via the high accuracy extrapolated ab initio thermochemistry protocol), and 25.6 kcal mol(-1) (DMC), which is encouraging in view of the disaccording data published thus far. The configuration-interaction based MR-ACPF expansion, which includes single and double excitations only, gives a slightly lower value of 24.1 kcal mol(-1), indicating that large basis sets and triple excitation patterns are necessary ingredients for a quantitative assessment. Our best estimate for D(0) at the CCSD(T) level is 25.3 kcal mol(-1), which is somewhat lower than the latest experimental value (D(0) = 31.1 ± 2.8 kcal mol(-1)[semicolon] reported by the Armentrout group) [Int. J. Mass Spectrom. 182/183, 99 (1999)]. These highly correlated methods are, however, computationally very demanding, and the results are therefore supplemented with those of more affordable DFT calculations. If used in combination with moderately-sized basis sets, the M05 and M06 hybrid functionals turn out to be promising candidates for studies on much larger systems containing a [CuO](+) core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号