首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate the use of hydrolysates from acid hydrolysis of four different oil crop biomass residues (OCBR) as low cost culture media for algae growth. The one-factor-at-a-time method was used to design a series of experiments to optimize the acid hydrolysis conditions through examining the total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the hydrolysates. The optimal conditions were found to be using 3 % sulfuric acid and hydrolyzing residues at 90 °C for 20 h. The hydrolysates (OCBR media) produced under the optimal conditions were used to cultivate the two algae strains, namely UM258 and UM268. The results from 5 days of cultivation showed that the OCBR media supported faster algae growth with maximal algal biomass yield of 2.7 and 3 g/L, respectively. Moreover, the total lipids for UM258 and UM268 were 54 and 35 %, respectively, after 5 days of cultivation, which suggested that the OCBR media allowed the algae strains to accumulate higher lipids probably due to high C/N ratio. Furthermore, over 3 % of omega-3 fatty acid (EPA) was produced for the two algae strains. In conclusion, OCBR media are excellent alternative for algae growth and have a great potential for large-scale production of algae-based ingredients for biodiesel as well as high-value food and pharmaceutical products.  相似文献   

2.
Poly(ϵ-caprolactone) was chemically modified by using dicumyl peroxide from 0.25 to 2 % (w/w) and the effects of molecular architecture on the density and morphology of PCL foams were examined. The polymer was first blended with dicumyl peroxide at a low temperature (80°C), to prevent premature peroxide decomposition. The peroxide modification was then performed at different temperatures, from 110°C to 150°C. The reaction kinetic was followed by measuring the dynamical rheological properties of the melt in isothermal experiments by using a parallel plate rheometer. The evolution of the macromolecular structure during the chemical reaction was followed by analyzing the time evolution of the complex viscosity. Foams were prepared from the peroxide modified PCL with a batch foaming process using nitrogen as the foaming agent under different process conditions. As expected, the increase of the molecular modification led to a shift towards higher temperatures of the foaming window and, moreover, influenced the viscoelastic behavior of the expanding polymeric matrix so that the final foam properties are affected.  相似文献   

3.
Acid hydrolysates of municipal solid waste (MSW) demonstrate poor fermentability which stems from the presence of various toxic substances liberated from the lignocellulosic material during the hydrolysis process and from toxic materials originating in the raw substrate. Ethanol yields of MSW hydrolysates were found to correlate with the severity of the hydrolysis conditions. The yields varied between 17% and 75% of the theoretical. It is shown that inhibition effects in MSW hydrolysates can be overcome by several treatment methods, with final ethanol yields, after 24 h fermentation, of between 81 and 94% of theoretical.The most effective method of improving fermentation yields was found to be a combined treatment of heat at 121 °C under pressure of 1.2 atm, prior to fermentation, with fermentation at the elevated pH of 6.5. This method was found to give good results for all the hydrolysates tested.High yeast inocula, heat treatment under pressure of 1.2 atm, and fermentation at pH 6.5 (without heating) were found to be only partially effective in most cases and of no beneficial effect in others.Other methods, including yeast acclimatization, adsorption, neutralization at high temperature or at high pH, and a reduced oxidation reduction potential were found to have no effect on the fermentation results.  相似文献   

4.
Mussel production generates losses and waste since their commercialisation must be aligned with target market criteria. Since mussels are rich in proteins, their meat can be explored as a source of bioactive hydrolysates. Thus, the main objective of this study was to establish the optimal production conditions through two Box–Behnken designs to produce, by enzymatic hydrolysis (using subtilisin and corolase), hydrolysates rich in proteins and with bioactive properties. The factorial design allowed for the evaluation of the effects of three factors (hydrolysis temperature, enzyme ratio, and hydrolysis time) on protein/peptides release as well as antioxidant and anti-hypertensive properties of the hydrolysates. The hydrolysates produced using the optimised conditions using the subtilisin protease showed 45.0 ± 0.38% of protein, antioxidant activity via ORAC method of 485.63 ± 60.65 µmol TE/g of hydrolysate, and an IC50 for the inhibition of ACE of 1.0 ± 0.56 mg of protein/mL. The hydrolysates produced using corolase showed 46.35 ± 1.12% of protein, antioxidant activity of 389.48 ± 0.21 µmol TE/g of hydrolysate, and an IC50 for the inhibition of ACE of 3.7 ± 0.33 mg of protein/mL. Mussel meat losses and waste can be used as a source of hydrolysates rich in peptides with relevant bioactive properties, and showing potential for use as ingredients in different industries, such as food and cosmetics, contributing to a circular economy and reducing world waste.  相似文献   

5.
The hydrolysis of diadenosine 5',5'-triphosphate to AMP and ADP has been studied over a wide pH-range. Under acidic conditions the reaction shows a first-order dependence on the hydronium ion concentration. Below pH 3 the rate-increase begins to level off. From pH 6 to 9 the hydrolysis is slow and pH-independent. Base-catalysed hydrolysis is observed in NaOH-solutions. Under alkaline conditions an intramolecular nucleophilic attack on the phosphate producing 3',5'-cAMP is also observed, but it is slower than the intermolecular reaction. Depurination of the adenosine moieties competes with the hydrolysis both under acidic and alkaline conditions, but the mechanisms are different. The temperature-dependence of the hydrolysis of Ap(3)A and the depurination of adenosine moieties were studied under acidic conditions, and the activation parameters of the reactions were calculated. The results of the work reflect the fact that the negatively charged polyphosphate group is very resistant towards nucleophilic attack. An efficient catalysis is only observed under acidic conditions, where the phosphate group becomes protonated. General acids or bases did not catalyse the hydrolysis. Furthermore, hydroxide ion catalysed cleavage is only observed at high base concentrations and other negatively charged nucleophiles did not attack the phosphate groups of diadenosine polyphosphates.  相似文献   

6.
Microalgae have been described as a source of bioactive compounds, such as peptides. Microalgae are easy to produce, making them a sustainable resource for extracting active ingredients for industrial applications. Several microalgae species have interesting protein content, such as Chlorella vulgaris with around 52.2% of protein, making it promising for peptide hydrolysate production. Therefore, this work focused on the production of water-soluble hydrolysates rich in proteins/peptides from the microalgae C. vulgaris and studied bioactive properties. For that, a design of experiments (DOE) was performed to establish the optimal conditions to produce hydrolysates with higher levels of protein, as well as antioxidant and antihypertensive properties. Four experimental factors were considered (cellulase percentage, protease percentage, hydrolysis temperature, and hydrolysis duration) for three responses (protein content, antioxidant activity, and antihypertensive activity). The optimal conditions determined by the DOE allowed producing a scaled-up hydrolysate with 45% protein, with antioxidant activity, measured by oxygen radical absorbance capacity assay, of 1035 µmol TE/g protein, IC50 for angiotensin-converting enzyme inhibition activity of 286 µg protein/mL, and α-glucosidase inhibition of 31% (30 mg hydrolysate/mL). The obtained hydrolysates can be used as functional ingredients for food and nutraceuticals due to their antioxidant, antihypertensive, and antidiabetic potential. Moreover, the antioxidant potential of the extracts may be relevant for the cosmetic industry, especially in antiaging formulations.  相似文献   

7.
Corn stover has potential as a resource for both fiber and chemical needs if separation strategies can be developed to deal with its heterogeneity. Relative hydrolysis characteristics were assessed for pith (sclerenchyma and parenchyma) and fiber (collenchyma) tissue fractions derived from mechanical separation of corn stover to determine whether classification by tissue type resulted in fractions with different hydrolysis response. The physical characteristics of the tissue fractions were analyzed. The hydrolysis behavior of the fractions was evaluated under both acidic and basic conditions. The results from the hydrolysis experiments are compared with previously reported compositional analysis for the tissue fractions.  相似文献   

8.
Biodegradable polymeric materials are intensively used in biomedical applications. Of particular interest for drug‐delivery applications are polymers that are stable at pH 7.4, that is, in the blood stream, but rapidly hydrolyze under acidic conditions, such as those encountered in the endo/lysosome or the tumor microenvironment. However, an increase in the acidic‐degradation rate of acid‐labile groups goes hand in hand with higher instability of the polymer at pH 7.4 or during storage, thus posing an intrinsic limitation on fast degradation under acidic conditions. Herein, we report that a combination of acid‐labile dimethyldioxolane side chains and hydroxyethyl side chains leads to acid‐degradable thermoresponsive polymers that are quickly hydrolyzed under slightly acidic conditions but stable at pH 7.4 or during storage. We ascribe these properties to high hydration of the hydroxy‐containing collapsed polymer globules in conjunction with autocatalytic acceleration of the hydrolysis reactions by the hydroxy groups.  相似文献   

9.
《印度化学会志》2023,100(2):100925
The green process route for pre-treatment and dyeing of Eri silk is proposed and investigated in this study. The natural plant-based saponins were extracted from Sapindus mukorossi by aaqueous extraction technique. Extracted Saponins showed a high emulsification index (68), low surface tension (41 dyne/cm), mild foaming (200 mm), and a slightly acidic pH, these characteristic properties are considered to be best suited for the processing of silk. The degumming was performed using Sapindus extract liquid with a concentration of 10% (owf) for 60 min at a temperature of 95 °C. The Eri silk degumming produced similar weight loss (4.63%), water absorbency (3 s) and optical properties - whiteness (80.33), yellowness (2.27) and brightness (70.05), as compared to the conventional process. The tensile strength (8.28 kgf)) and elongation (34.29%) was found to be better than the properties of the fabric processed with conventional chemical processing. The dyeing of degummed and bleached Eri silk with natural dyes showed comparable colour depth and uniformity of shade as compared to the conventional chemical processing. The overall fastness performance of dyed Eri silk was in line with the industry standards. Advanced characterization techniques such as FTIR was used for structural analysis of treated Eri silk.  相似文献   

10.
A protein isolate, with a 74.4% (w/w) protein content, was recovered from a simulated potato processing plant waste effluent by complexation with carboxymethylcellulose. The protein solubility of the isolate was satisfactory, it decreased in the presence of NaCl, but was not markedly affected by heat treatment. The isolate exhibited remarkable foaming and foam stabilizing properties, compared with lyophilized egg white, which are attributed to the very high surface activity of the potato protein molecules, which following adsorption at a/w interfaces, result in a much higher surface pressure development compared with egg albumen. A significant part of the foaming ability and the high surface activity of the isolate should be connected with the presence in the isolate of a small fraction of proteins with a relatively low molecular weight. The sulfhydryl groups of these proteins, following adsorption at the a/w interface, during the process of foam formation and denaturation are oxidized leading to the possible formation of intermolecular disulfide linkages.  相似文献   

11.
The specificities of carboxypeptidases from Actinomucor elegans were investigated by determining enzymatic activities at pH 7.0 and pH 4.0 with 16 Z-dipeptides and three Z-tripeptides as substrates. The debittering effect was evaluated and the free amino acid compositions of the soybean protein hydrolysates were analyzed before and after treatment with A. elegans extract at pH 7.0 and pH 4.0, with carboxypeptidases from Aspergillus oryzae as control. The results of the enzyme activity determinations indicated that carboxypeptidases from A. elegans prefer hydrophobic substrates, such as Z-Phe-Leu, Z-Phe-Tyr-Leu, and Z-Phe-Tyr. The sensory evaluation and free amino acid composition analysis showed that these carboxypeptidases are efficient tools for decreasing the bitterness of peptides because they liberated the fewest free amino acids, which consisted of 73% hydrophobic amino acids, under acidic conditions. Carboxypeptidases from A. elegans display promising prospects for future applications in the protein hydrolysate industry.  相似文献   

12.
梁图  傅青  辛华夏  李芳冰  金郁  梁鑫淼 《色谱》2014,32(12):1306-1312
来自中药的水溶性多糖具有广谱治疗和低毒性特点,是天然药物及保健品研发中的重要组成部分。针对中药多糖结构复杂、难以表征的问题,本文以中药黄芪中的多糖为研究对象,采用"自下而上"法完成对黄芪多糖的表征。首先使用部分酸水解方法水解黄芪多糖,分别考察了水解时间、酸浓度和温度的影响。在适宜条件(4 h、1.5 mol/L三氟乙酸、80 ℃)下,黄芪多糖被水解为特征性的寡糖片段。接下来,采用亲水作用色谱与质谱联用对黄芪多糖部分酸水解产物进行分离和结构表征。结果表明,提取得到的黄芪多糖主要为1→4连接线性葡聚糖,水解得到聚合度4~11的葡寡糖。本研究对其他中药多糖的表征具有一定的示范作用。  相似文献   

13.
多酶复合水解微波加热制备小分子大豆肽   总被引:4,自引:0,他引:4  
以水解度和AN为指标,确定了微波加热条件下,三种单酶(碱性蛋白酶、中性蛋白酶、酸性蛋白酶)水解大豆蛋白的最佳工艺条件及三种酶复合水解的加酶顺序,将大豆蛋白最大限度的分解为小分子大豆多肽和氨基酸。毛细管电泳实验表明:多酶复合水解优于单酶。  相似文献   

14.
Soy protein isolate (SPI) powders often have poor water solubility, particularly at pH values close to neutral, which is an attribute that is an issue for its incorporation into complex nutritional systems. Therefore, the objective of this study was to improve SPI solubility while maintaining low viscosity. Thus, the intention was to examine the solubility and rheological properties of a commercial SPI powder at pH values of 2.0, 6.9, and 9.0, and determine if heat treatment at acidic or alkaline conditions might positively influence protein solubility, once re-adjusted back to pH 6.9. Adjusting the pH of SPI dispersions from pH 6.9 to 2.0 or 9.0 led to an increase in protein solubility with a concomitant increase in viscosity at 20 °C. Meanwhile, heat treatment at 90 °C significantly improved the solubility at all pH values and resulted in a decrease in viscosity in samples heated at pH 9.0. All SPI dispersions measured under low-amplitude rheological conditions showed elastic-like behaviour (i.e., G′ > G″), indicating a weak “gel-like” structure at frequencies less than 10 Hz. In summary, the physical properties of SPI can be manipulated through heat treatment under acidic or alkaline conditions when the protein subunits are dissociated, before re-adjusting to pH 6.9.  相似文献   

15.
Calf thymus DNA was treated with melphalan, a nitrogen mustard, and the formation of melphalan cross-linked DNA adducts was investigated. These cross-linked adducts could not be detected either in the enzymatically or in the thermally generated DNA hydrolysates. However, a search for DNA cross-linked adducts in the hydrolysates obtained under acidic conditions revealed the presence of different types of cross-links, mainly containing an adenine moiety. These results are very important because they show that the detection of cross-links is dependent on the hydrolytic procedure used and that these cross-linked adducts are formed under totally different reaction conditions from those in in vivo situations. This can explain the very low abundance or even the absence of cross-linked adducts in nitrogen mustard treated animals. The generally accepted theory that the anti-cancer activity of bifunctional mustards such as melphalan is due to cross-linking of DNA strands remains therefore from our point of view questionable.  相似文献   

16.
Foaming effect strongly impacts the physical and mechanical properties of foam glass materials, but an understanding of its mechanism especially at the molecular level is still limited. In this study, the foaming effects of dextrin, a mixture of dextrin and carbon, and different carbon allotropes are investigated with respect to surface morphology as well as physical and mechanical properties, in which 1 wt.% carbon black is identified as an optimal choice for a well-balanced material property. More importantly, the different foaming effects are elucidated by all-atomistic molecular dynamics simulations with molecular-level insights into the structure–property relationships. The results show that smaller pores and more uniform pore structure benefit the mechanical properties of the foam glass samples. The foam glass samples show excellent chemical and thermal stability with 1 wt.% carbon as the foaming agent. Furthermore, the foaming effects of CaSO4 and Na2HPO4 are investigated, which both create more uniform pore structures. This work may inspire more systematic approaches to control foaming effect for customized engineering needs by establishing molecular-level structure–property–process relationships, thereby, leading to efficient production of foam glass materials with desired foaming effects.  相似文献   

17.
Emulsifying and foaming properties of amaranth seed protein isolates   总被引:1,自引:0,他引:1  
The emulsifying and foaming properties of amaranth seed protein isolates prepared by wet extraction methods, such as isoelectric precipitation and dialysis, were investigated. The various isolates differ from each other in many ways. The isolate prepared by isoelectric precipitation mainly contains the globulin but not the albumin fraction and a considerable amount of polysaccharides, while the other isolate prepared by the dialysis method contains all the globulin and albumin fractions. The protein-polysaccharide complexes enhance emulsion stability due to steric repulsion effects. Measurements of the emulsion stability show that the studied protein isolates act as effective stabilizing agents. Foam expansion is dominated by the surface activity and availability of protein in the solution, while foam stability is determined by the properties of the interfacial layer. The results show that amaranth protein isolates act as an effective foaming agent. Both foaming properties intensified from the presence of protein-polysaccharide complexes.  相似文献   

18.
An assay based on enzymatic hydrolysisand microdialysis sampling, micro-high-performance anion-exchange chromatography (micro-HPAEC) with electrospray ionisation mass spectrometry (ESI-MS) for the characterisation of legumes is presented. Characterisation of two bean varieties; Phaseolus mungo and P. acutifilous was based upon enzymatic hydrolysis using an endo-beta-mannanase from Aspergillus niger with subsequent analysis of the hydrolysates with HPAEC-MS. The hydrolysates were detected in the positive ionisation mode after desalting the chromatographic effluent, employing a cation-exchange membrane desalting device with water as the regenerating liquid. Mass chromatograms, acquiredafter hydrolysis of both bean samples for 12 h, showed two different profiles of hydrolysates. The P. mungo bean hydrolysate showed the presence of saccharides with a degree of polymerisation (DP) in the range of 2-6, whereas that of P. acutifilous showed only DPs of 2-5. Both bean samples had one type of DP 2, but showed different types of DPs 3, 4 and 5. Only the P. mungo sample showed the presence of DP 6. The most abundant fraction for P. mungo was DP 4, whereas that for P. acutifilous was DP 5. Tandem MS of the hydrolysates showed that the DP 2 hydrolysates observed for the samples were of the same type, having a 1,6 linkage. Also tandem MS data for DPs 3, 4, and 5 showed that similar hydrolysates were present within the same sample as well as among the two samples. The data also showed the existence of 1,6 linkages for DP 3, 4, and 5 hydrolysates. The single enzymatic hydrolysis in combination with microdialysis and HPAEC with ESI-MS proved to be sufficient and reproducible for profiling and showing the difference between the two bean samples.  相似文献   

19.
Aminoacridines have a long history in the drug and dye industries and display a wide range of biological and physical properties. Despite the historical relevance of 9-aminoacridines, there have been few studies investigating their stability. 9-Aminoacridines are known to hydrolyze at the C9-N15 bond, yielding acridones. In this study, the pH-dependent hydrolysis rates of a series of 9-substituted aminoacridines are investigated. In addition, ground-state physical properties of the compounds are determined using ab initio quantum mechanics calculations to gain insight into the forces that drive hydrolysis. An analysis of the bond orders, bond dissociation energies, and conformational energies show that the rate of hydrolysis depends on two main factors: delocalization across the C9-N15 bond and steric effects. The computational results are applied to explain the change in experimental rates of hydrolysis going from primary to secondary and to tertiary substituted 9-aminoacridines. In the case of tertiary substituted amines, the calculations indicate the C9-N15 bond is forced into a more gauche-like conformation, greatly diminishing delocalization (as shown by reductions in bond orders and bond energy), which leads to rapid hydrolysis. A model of intramolecular hydrogen bonding is also presented, which explains the increased rate of hydrolysis observed for highly substituted compounds under acidic conditions.  相似文献   

20.
In this work, the comparison of the physical properties of silver nanoparticles (AgNPs) obtained via the reduction of silver nitrate (AgNO3) in biological and chemical (model) syntheses supplemented with the biosurfactant surfactin is described. In the studies, two strains of Bacillus subtilis (denoted T’1 and I’1a) were used. The biological synthesis of AgNPs was performed using supernatants obtained from cultures of bacteria growing on brewery effluents, molasses, and Luria–Bretani (LB) medium. In model experiments, ascorbic acid served as the reductant; surfactin acted as the stabilizing agent. The surfactin concentrations were adjusted to 5 and 30?mg/L, which corresponded to minimum and maximum surfactin concentrations as measured in the supernatants obtained from the B. subtilis cultures. The chemical synthesis was carried out at acidic as well as alkaline pH. Dynamic light scattering (DLS) revealed that in model and biological samples, single AgNPs were accompanied by aggregated structures. Transmission electron microscopy showed that the contribution of the aggregates in bacterial supernatants and in chemical synthesis is negligible under acidic conditions. However, in the alkaline environment, this contribution predominates. In the model experiments, smaller nanoparticles were formed with higher concentrations of surfactant. The presence of surfactin significantly increased the stability of AgNPs in both bio- and chemical syntheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号