首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) catalyzes the oxidative phosphorylation of its substrate in a two-step reaction. Asa result of the first, oxidativestep, the covalent intermediate where in 3-phosphoglyceroyl moiety is bound to Cys149 of the active center is subjected to nucleophilic attack by inorganic phosphate, but remains resistant to hydrolytic decomposition. This ensures tight coupling of oxidation with phosphorylation in glycolysis. In this article, we present the experimental evidence for the conversion of GAPDH into a form capable of performing the reaction in the absence of inorganic phosphate. The structural basis for this conversion is the oxidation of a cysteine residue (probably Cys 153) into a sulfenic acid derivative under mild conditions to affect the integrity of the essential Cys 149. As a result, an intram olecular transfer of 3-phosphoglyceroyl group from the active center Cys 149 to Cys 153 becomes possible with subsequent hydrolysis of the sulfenyl carboxylate intermediate.  相似文献   

2.
An effective Cp*Rh catalyzed transfer hydrodechlorination of aryl chlorides was achieved with high tolerance towards a variety of functional groups using 2-butanol as a hydrogen source.  相似文献   

3.
Two previous mechanistic studies of the amination of aryl halides catalyzed by palladium complexes of 1,1'-binaphthalene-2,2'-diylbis(diphenylphosphine) (BINAP) are reexamined by the authors of both studies. This current work includes a detailed study of the identity of the BINAP-ligated palladium complexes present in reactions of amines with aryl halides and rate measurements of these catalytic reactions initiated with pure precatalysts and precatalysts generated in situ from [Pd2(dba)3] and BINAP. This work reveals errors in both previous studies, and we describe our current state of understanding of the mechanism of this synthetically important transformation. 31P NMR spectroscopy shows that several palladium(0) species are present in the catalytic system when the catalyst is generated in situ from [Pd2(dba)3] and BINAP, and that at least two of these complexes generate catalytic intermediates. Further, these spectroscopic studies and accompanying kinetic data demonstrate that an apparent positive order in the concentration of amine during reactions of secondary amines is best attributed to catalyst decomposition. Kinetic studies with isolated precatalysts show that the rates of the catalytic reactions are independent of the identity and the concentration of amine, and studies with catalysts generated in situ show that the rates of these reactions are independent of the concentration of amine. Further, reactions catalyzed by [Pd(BINAP)2] with added BINAP are found to be first-order in bromoarene and inverse first-order in ligand, in contrast to previous work indicating zero-order kinetics in both. These data, as well as a correlation between the decay of bromobenzene in the catalytic reaction and the predicted decay of bromobenzene from rate constants of studies on stoichiometric oxidative addition, are consistent with a catalytic process in which oxidative addition of the bromoarene occurs to [Pd(BINAP)] prior to coordination of amine and in which [Pd(BINAP)2], which generates [Pd(BINAP)] by dissociation of BINAP, lies off the cycle. By this mechanism, the amine and base react with [Pd(BINAP)(Ar)(Br)] to form an arylpalladium amido complex, and reductive elimination from this amido complex forms the arylamine.  相似文献   

4.
The intermolecular hydroaminoalkylation of unactivated alkenes and vinyl arenes with secondary amines occurs readily in the presence of tantalum and niobium binaphtholate catalysts with high regio- and enantioselectivity (up to 98% ee). Mechanistic studies have been conducted in order to determine the kinetic order of the reaction in all reagents and elucidate the rate- and stereodetermining steps. The effects of substrate steric and electronic properties on the overall reaction rate have been evaluated. The reaction is first order in amine and the catalyst, while exhibiting saturation in alkene at high alkene concentration. Unproductive reaction events including reversible amine binding and arene C-H activation have been observed. The formation of the metallaaziridine is a fast reversible nondissociative process and the overall reaction rate is limited either by amide exchange or alkene insertion, as supported by reaction kinetics, kinetic isotope effects, and isotopic labeling studies. These results suggest that the catalytic activity can be enhanced by employing a more electron-deficient ligand backbone.  相似文献   

5.
ABSTRACT

The oxidation of a series of aryl 1-methyl-1-phenylethyl sulfides with H2O2 catalyzed by the two tetradentate nonheme-iron complexes [(PDP)FeII(SbF6)2] and [(BPMCN)FeII(OTf)2] occurs by an electron transfer-oxygen transfer (ET/OT) mechanism as supported by the observation of products deriving from fragmentation of the corresponding radical cations in association with S-oxidation products (sulfoxides).  相似文献   

6.
Earlier work on the hydrolysis of aryl phosphinothioate esters has led to contradictory mechanistic conclusions. To resolve this mechanistic ambiguity, we have measured linear free energy relationships (beta(nuc) and beta(lg)) and kinetic isotope effects for the reactions of oxyanions with aryl dimethylphosphinothioates. For the attack of nucleophiles on 4-nitrophenyl dimethylphosphinothioate, beta(nuc) = 0.47 +/- 0.05 for phenoxide nucleophiles (pK(a) < 11) and beta(nuc) = 0.08 +/- 0.01 for hydroxide and alkoxide nucleophiles (pK(a) >or= 11). Linearity of the plot in the range that straddles the pK(a) of the leaving group (4-nitrophenoxide, pK(a) 7.14) is indicative of a concerted mechanism. The much lower value of beta(nuc) for the more basic nucleophiles reveals the importance of a desolvation step prior to rate-limiting nucleophilic attack. The reactions of a series of substituted aryl dimethylphosphinothioate esters give the same value of beta(lg) with the nucleophiles HO(-) (beta= -0.54 +/- 0.03) and PhO(-) (beta = -0.52 +/- 0.09). A significantly better Hammett correlation is obtained with sigma(-) than with sigma or sigma degrees , as expected for a transition state involving rate-limiting cleavage of the P-OAr bond. The (18)O KIE at the position of bond fission ((18)k = 1.0124 +/- 0.0008) indicates the P-O bond is approximately 40% broken, and the (15)N KIE in the leaving group ((15)k = 1.0009 +/- 0.0003) reveals the nucleofuge carries about a third of a negative charge in the transition state. Thus, both the LFER and KIE data are consistent with a concerted reaction and disfavor a stepwise mechanism.  相似文献   

7.
8.
随温度升高,丙烯酸甲酯和丙烯酸丁酯的氢甲酰化反应产物中α/β醛的比例无明显变化,但加氢产物增多。而甲基丙烯酸甲酯的加氢产物非常少。三种丙烯酸酯氢甲酰化反应的TOF值排序:丙烯酸甲酯>丙烯酸丁酯>甲基丙烯酸甲酯与它们在水中的溶解度排序相同,这说明在两相催化体系中,含功能基团丙烯酸酯类底物的氢甲酰化反应受传质的影响很大,它们溶入水中的量是决定其反应速度快慢的关键因素。  相似文献   

9.
10.
The performance of cross-metathesis reactions between acrylate esters and olefins catalyzed by Grubbs catalysts have been enhanced by the simple addition of p-cresol. For example, the efficiency of the cross metathesis reaction between methyl acrylate and 1-decene catalyzed by 2 was significantly increased by addition of p-cresol to the reaction mixture, resulting in increased product yields and E/Z ratios.  相似文献   

11.
The Ziegler catalyst TiCl4-Et2AlCl and the arenetitanium(II) complex (η6-C6H6)Ti(II)(AlCl4)2 induce [6 + 2]cycloaddition reactions of cycloheptatriene with dienes and acetylenes. Addition to 1,3-butadiene affords 7 - endo - vinyl - bicyclo[4.2.1]nona - 2,4 - diene (main product) and bicyclo[4.4.1]- undeca - 2,4,8 - triene, a product of [6+4]cycloaddition. Isoprene reacts similarly, yielding mainly 7- endo - isopropenyl - bicyclo[4.2.1]nona - 2,4 - diene. 2,3 - Dimethyl - 1,3 - butadiene gives 8,9dimethylbicyclo [4.4.1]undeca - 2,4,8 - triene, a product of [6 + 4]cycloaddition, while [6 + 2]cross-adducts are minor products. The reaction of cycloheptatriene with norbornadiene gives mainly hexacyclo[6.5.1.02,7.03,12.6,10.09,13]tetradec - 4 - ene via [6+2]cycloaddition followed by intramolecular Diels-Alder reaction. As a by-product, pentacyclo[7.5.0.02,7.03,5.048]tetradeca - 10,12 - diene is formed by a [2+2+2]mechanism. Addition of cycloheptatriene to diphenylacetylene and bis - (tri- methylsilyl)acetylene furnishes sustituted bicyclo[4.2.1]nona - 2,4,7 - trienes. Alkenes, E,E-2,4 - hexadiene and 1,3 - cyclooctadiene are unreactive. The [6+2]cycloaddition is made possible by coordination of cycloheptatriene to titanium, which changes the symmetry of the frontier orbitals in the triene. The reactivity of the trienophile is also enhanced by coordination to the catalyst.  相似文献   

12.
Cinchona alkaloids catalyze the enantioselective Mannich reaction of beta-keto esters with acyl aryl imines. The reaction requires 10 mol % of cinchonine or cinchonidine. The reaction products are obtained in good yields (81-99%), high enantioselectivities (80-96% ee), and in diastereoselectivities that range from 1:1 to >95:5. The cinchonine-catalyzed reaction provides access to highly functionalized building blocks used in the asymmetric synthesis of a dihydropyrimidone and beta-amino alcohol.  相似文献   

13.
The synthesis of diaryls catalyzed by electrochemically generated zero-valent nickel with 2,2-diapyridyl as the ligand was carried out from aryl halides in high yield. Feasibility was demonstrated for synthesizing the catalyst itself by the anodic dissolution of nickel in the presence of 2-bromopyridine in a diaphragmless cell.A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Science Center, Russian Academy of Sciences, 420083 Kazan. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 7, pp. 1674–1676, July, 1992.  相似文献   

14.
[reaction: see text] The first Rh-catalyzed intramolecular [2 + 2 + 2 + 1] cycloaddition reaction of enediynes and CO is reported. This novel higher order cycloaddition process gives the corresponding 5-7-5 ring systems in high yield and selectivity. This process is another significant addition to the arsenal of cycloaddition-based synthetic methods, which provide powerful tools for rapid and efficient construction of complex polycyclic systems.  相似文献   

15.
Alkoxyallenes ( 1 ) are found to catalyze cyclotrimerization of aryl isocyanates ( 2 ) in dimethylformamide (DMF) to afford 1,3,5-triaryl-s-triazine-2,4,6-trione ( 3 : cyclic trimer of 2 ), although the reaction of 1 with 2 in bulk gave the corresponding copolymer. In order to speculate about the mechanism of the cyclotrimerization, macrozwitterion 4 , was prepared by copolymerization of 1 and 2 in bulk, and the catalytic activity of 4 was further studied. Cyclotrimerization of 2 was promoted by 4 and quenching of 4 with methanol completely destroyed the catalytic activity. Consequently, the alkoxyallene-catalyzed cyclotrimerization of 2 is assumed to take place through a zwitterion generated from 1 and 2 .  相似文献   

16.
[reaction: see text] Various kinds of transition metals catalyzed the hydrolysis of alkenyl esters and ethers under buffer-free, high concentration conditions compared to usual biocatalysts. Hydrolytic kinetic resolution of cis-2-tert-butylcyclohexyl vinyl ether was achieved by chiral (salen)Co complexes with good selectivity (k(rel) = 10.0).  相似文献   

17.
The Ru3(CO)12-catalyed cross-coupling reaction of esters with organoboron compounds leading to ketones is described. A wide variety of functional groups can be tolerated under the reaction conditions. Aromatic boronates function as a coupling partner to give aryl ketones. Acyl-alkyl coupling to dialkyl ketones is also achieved by the use of 9-alkyl-9-BBN in place of boronates. The Ru3(CO)12-catalyzed decarbonylative reduction of esters with ammonium formate (HCOONH4) leading to hydrocarbons is also described. No expected aldehydes are produced, and controlled experiments indicate that aldehydes are not intermediate for the transformation. A hydrosilane can also be used as a reducing reagent in place of HCOONH4. A wide variety of functional groups are compatible for both reactions. The key step for both catalytic reactions is the directing group-promoted cleavage of an acyl carbon-oxygen bond in esters, leading to the generation of acyl transition metal alkoxo complexes.  相似文献   

18.
19.
Regioselective enol ester formation results from the addition of saturated and unsaturated carboxylic acids to phenylacetylene in the presence of RuCl3, RuCl3/2PR3 or RuCl2(PMe2)(arene) catalysts.  相似文献   

20.
Primary alcohols undergo efficiently oxidative dimerization by iridium complexes under air without any solvent to form esters in fair to good yields. For instance, the reaction of 1-dodecanol in the presence of [IrCl(coe)2]2 (3 mol %) at 95 °C for 15 h produced dodecyl dodecanoate in 91% isolated yield. This is the first successful Ir-catalyzed oxidative dimerization of primary alcohols to esters using air as an oxidant. Various primary alcohols are converted to the corresponding esters in fair to good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号