首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several singlet and triplet potential energy surfaces (PES) for the Bergman cyclization of cis-1,5-hexadiyne-3-ene (1a) have been computed by UDFT, CI, CASCI, CASSCF, and CASMP2 methods. It is found that the first six excited states of 1a can be qualitatively described as linear combinations of the configurations of weakly interacting ethylene and acetylene units. Although the symmetry relaxation from C2nu to C2 makes cyclization of the 13B state Woodward-Hoffmann allowed, it also increases the probability of competing cis-trans isomerization. Hydrogen atom abstraction is another plausible pathway because the terminal alkyne carbons possess a large radical character. In view of the competing processes, we conclude that the Bergman cyclization along the 13B path is unlikely despite its exothermicity (Delta = -42 kcal/mol). Calculations on cyclic analogues of 1a lead to similar conclusions. A less exothermic, but more plausible pathway for photochemical cyclization lies on the 2(1)A PES (Delta = -18 kcal/mol). Compared to the 1(1)A(1) and 1(3)B states, the 2(1)A state has less in-plane electron repulsion which may facilitate cyclization. The resulting p-benzyne intermediate has an unusual electronic structure combining singlet carbene and open-shell diradical features. Deactivation of the 2(1)A state of 1a is a competing pathway.  相似文献   

2.
The mechanisms of the Myers-Saito cyclization and the Schmittel cyclization of hepta-1,2,4-triene-6-yne are studied by ab initio multireference MO methods (CASSCF and MRMP2 methods). For the Myers-Saito cyclization, two transition states with C(s) and C? symmetries are located. The transition state with C1 symmetry is only 1.5 kcal/mol lower in energy than that with C(s) symmetry at the MRMP2 calculation level. The obtained activation energy at the transition state with C? symmetry and the reaction energy are 16.6 and 16.2 kcal/mol exothermic, respectively. For the Schmittel cyclization, two transition states with C(s) and C? symmetry are also obtained. The transition state with C? symmetry is 7.9 kcal/mol lower in energy than that with C(s) symmetry. The transition state with C? symmetry for Schmittel cyclization is 6.7 kcal/mol higher in energy than that for the Myers-Saito cyclization. The reaction mechanisms are analyzed by a CiLC-IRC method. The interactions of orbitals for the Myers-Saito and Schmittel cyclizations can be distinguished.  相似文献   

3.
Quantum mechanical calculations using restricted and unrestricted B3LYP density functional theory, CASPT2, and CBS-QB3 methods for the dimerization of 1,3-cyclohexadiene (1) reveal several highly competitive concerted and stepwise reaction pathways leading to [4 + 2] and [2 + 2] cycloadducts, as well as a novel [6 + 4] ene product. The transition state for endo-[4 + 2] cycloaddition (endo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 28.7 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 19.0 kcal/mol) is not bis-pericyclic, leading to nondegenerate primary and secondary orbital interactions. However, the C(s) symmetric second-order saddle point on the B3LYP energy surface is only 0.3 kcal/mol above endo-2TS. The activation enthalpy for the concerted exo-[4 + 2] cycloaddition (exo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 30.1 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 21.1 kcal/mol) is 1.4 kcal/mol higher than that of the endo transition state. Stepwise pathways involving diallyl radicals are formed via two different C-C forming transition states (rac-5TS and meso-5TS) and are predicted to be competitive with the concerted cycloaddition. Transition states were located for cyclization from intermediate rac-5 leading to the endo-[4 + 2] (endo-2) and exo-[2 + 2] (anti-3) cycloadducts. Only the endo-[2 + 2] (syn-3) transition state was located for cyclization of intermediate meso-5. The novel [6 + 4] "concerted" ene transition state (threo-4TS, DeltaH(double dagger)(UB3LYP(0K)) = 28.3 kcal/mol) is found to be unstable with respect to an unrestricted calculation. This diradicaloid transition state closely resembles the cyclohexadiallyl radical rather than the linked cyclohexadienyl radical. Several [3,3] sigmatropic rearrangement transition states were also located and have activation enthalpies between 27 and 31 kcal/mol.  相似文献   

4.
5.
The triggering and biological activity of the naturally occurring enediyne dynemicin A (1) was investigated, both inside and outside the minor groove of the duplex 10-mer B-DNA sequence d(CTACTACTGG).d(CCAGTAGTAG), using density functional theory (B3LYP with the 3-21G and 6-31G(d) basis set), BD(T)/cc-pVDZ (Brueckner doubles with a perturbative treatment of triple excitations), and the ONIOM approach. Enediyne 1 is triggered by NADPH in a strongly exothermic reaction (-88 kcal/mol), which involves a number of intermediate steps. Untriggered 1 has a high barrier for the Bergman cyclization (52 kcal/mol) that is lowered after triggering to 16.7 kcal/mol due to an epoxide opening and the accompanying strain relief. The Bergman reaction of triggered 1 is slightly exothermic by 2.8 kcal/mol. The singlet biradical formed in this reaction is kinetically stable (activation enthalpies of 19.5 and 21.8 kcal/mol for retro-Bergman reactions) and is as reactive as para-benzyne. The activity-relevant docking mode is an edge-on insertion into the minor groove, whereas the intercalation between base pairs, although leading to larger binding energies, excludes a triggering of 1 and the development of its biological activity. Therefore, an insertion-intercalation model is developed, which can explain all known experimental observations made for 1. On the basis of the insertion-intercalation model it is explained why large intercalation energies suppress the biological activity of dynemicin and why double-strand scission can be achieved only in a two-step mechanism that involves two enediyne molecules, explaining thus the high ratio of single-strand to double-strand scission observed for 1.  相似文献   

6.
7.
The potential energy surfaces (PESs) of the electrocyclic reactions of o-xylylene at the ground and the lowest excited states are calculated by CASSCF molecular orbital and MRMP2 methods. The lowest excited state geometry of o-xylylene has C(2v) symmetry and is about 65 kcal mol(-1) in energy above the ground state. The PESs in the vicinity of the conical intersection are different from those of the electrocyclic reaction of cis-butadiene. In the vicinity of the conical intersection, the transition state at the ground state relating to methylene-cycloheptadienyl carbene is located. The transition state is only 4.3 kcal mol(-1) lower in energy than the conical intersection at the CASSCF(10,10)/6-31G(d) level and 0.5 kcal mol(-1) lower at the MRMP2/6-311+G(d,p) level. The transition state corresponding to benzocyclobutene does not locate in the vicinity of the conical intersection because of the resonance energy between benzene ring and methylene group.  相似文献   

8.
H-atom addition and abstraction processes involving ortho-, meta-, and para-benzyne have been investigated by multiconfigurational self-consistent field methods. The H(A) + H(B)...H(C) reaction (where r(BC) is adjusted to mimic the appropriate singlet-triplet energy gap) is shown to effectively model H-atom addition to benzyne. The doublet multiconfiguration wave functions are shown to mix the "singlet" and "triplet" valence bond structures of H(B)...H(C) along the reaction coordinate; however, the extent of mixing is dependent on the singlet-triplet energy gap (DeltaE(ST)) of the H(B)...H(C) diradical. Early in the reaction, the ground-state wave function is essentially the "singlet" VB function, yet it gains significant "triplet" VB character along the reaction coordinate that allows H(A)-H(B) bond formation. Conversely, the wave function of the first excited state is predominantly the "triplet" VB configuration early in the reaction coordinate, but gains "singlet" VB character when the H-atom is close to a radical center. As a result, the potential energy surface (PES) for H-atom addition to triplet H(B)...H(C) diradical is repulsive! The H3 model predicts, in agreement with the actual calculations on benzyne, that the singlet diradical electrons are not coupled strongly enough to give rise to an activation barrier associated with C-H bond formation. Moreover, this model predicts that the PES for H-atom addition to triplet benzyne will be characterized by a repulsive curve early in the reaction coordinate, followed by a potential avoided crossing with the (pi)1(sigma*)1 state of the phenyl radical. In contrast to H-atom addition, large activation barriers characterize the abstraction process in both the singlet ground state and first triplet state. In the ground state, this barrier results from the weakly avoided crossing of the dominant VB configurations in the ground-state singlet (S0) and first excited singlet (S1) because of the large energy gap between S0 and S1 early in the reaction coordinate. Because the S1 state is best described as the combination of the triplet X-H bond and the triplet H(B)...H(C) spin couplings, the activation barrier along the S0 abstraction PES will have much less dependence on the DeltaE(ST) of H(B)...H(C) than previously speculated. For similar reasons, the T1 potential surface is quite comparable to the S0 PES.  相似文献   

9.
(6/6)CASSCF and CASPT2/6-31G calculations have been performed to understand the experimental finding of Goldstein and Benzon (J. Am. Chem. Soc. 1972, 94, 5119) that exo-bicyclo[2.2.0]hexane-d(4) (1b) undergoes ring inversion to form endo-bicyclo[2.2.0]hexane-d(4) (4b) faster than it undergoes cleavage to form cis,trans-1,5-hexadiene-d(4) (3b). Goldstein and Benzon also found that the latter reaction, which must occur via a chairlike transition structure (TS), is much faster than cleavage of 1b to trans,trans-1,5-hexadiene-d(4) (2b) via a boatlike TS. Our calculations reveal that all three of these reactions involve ring opening of 1, through a boat diradical TS (BDTS), to form a twist-boat diradical intermediate (TBDI). TBDI can reclose to 4 via a stereoisomeric boat diradical TS (BDTS'), or TBDI can cleave, either via a half-chair diradical TS (HCDTS) to form 3 or via a boat TS (BTS) to form 2. The calculated values of DeltaH(++) = 34.6 kcal/mol, DeltaS(++) = -1.6 eu, and DeltaH(++) = 35.2 kcal/mol, DeltaS(++) = 2.0 eu for ring inversion of 1 to 4 and cleavage of 1 to 3, respectively, are in excellent agreement with the values measured by Goldstein and Benzon. The higher value of DeltaH(++) = 37.6 kcal/mol, computed for cleavage of TBDI to 2, is consistent with the experimental finding that very little 2b is formed when 1b is pyrolyzed. The relationships between BDTS, HCDTS, and BTS and the chair and boat Cope rearrangement TSs (CCTS and BCTS) are discussed.  相似文献   

10.
The influence of electron-withdrawing groups (carbonyl and carboxyl) at the alkyne termini on the reactivity of enediynes was investigated by a combination of experimental and computational techniques. While the general chemical reactivity of such enediynes, especially if non-benzannelated, is increased markedly, the thermal cyclization, giving rise to Bergman cyclization products, is changed little relative to the parent enediyne system. This is evident from kinetic measurements and from density functional theory (DFT, BLYP/6-31G + thermal corrections) computations of the experimental systems which show that the Bergman cyclization barriers slightly (3-4 kcal/mol) increase, in contrast to earlier theoretical predictions. The effect on the endothermicities is large (DeltaDeltaH(r) = 7-12 kcal/mol). Hence, the increased reactivity of the substituted enediynes is entirely due to nucleophiles or radicals present in solution. This was demonstrated by quantitative experiments with diethylamine and tetramethyl piperidyl oxide (TEMPO) which both give fulvenes through 5-exo-dig cyclizations.  相似文献   

11.
The mechanism of the reaction between acetylene and ozone to form a primary ozonide (POZ) in the gas phase has been studied theoretically. The concerted pathway, HCCH + O3 --> POZ, proceeds via a biradicaloid transition state TS0. The stepwise pathway is a three-step reaction, HCCH + O3 --> M1 --> M2 --> POZ, involving two biradical TSs and two biradical intermediates M1 and M2. The segment of the global potential energy surface (PES) for the concerted pathway is characterized as a R-PES, which is obtained from the restricted (R) density functional theory and Hartree-Fock-based methods. The RDFT and RHF solutions of TS0 and O3 are unstable toward spin-symmetry breaking. The wave function instability for TS0 and O3 results in a discontinuity between the R-PES and the region of the global PES encompassing the biradical TSs and the intermediates of the stepwise pathway, which are characterized with unrestricted (U) methods. The global PES is characterized separately as an U(R)-PES using a combination of the R and U methods. Several different values of barriers for the concerted pathway and the energy of concert (Ec) can be estimated due to complications arising from the discontinuity between the R- and the U(R)-PES and the existence of two different RDFT and UDFT O3 equilibrium geometries. RCCSD(T)//RDFT predicts a barrier of 8.2 kcal/mol. U(R)CCSD(T)/U(R)DFT predicts a barrier of 13.8 kcal/mol for the concerted and 15.3 kcal/mol for the stepwise pathway. Comparison between the R-PES barrier to the concerted pathway and the U(R)-PES barrier to the stepwise pathway suggests the former to be the only significant mechanism. Consideration of the energy difference between TS1, the TS for the first step of the stepwise mechanism, and TS0 within the global PES leads to a significantly smaller Ec. Geometry optimization with CASSCF and energy point calculations with MRMP2 are employed to characterize TS0 and TS1. MRMP2//CASSCF predicts the energy level of TS1 to be higher than that of TS0 by 2 kcal/mol. Analysis of experimental and computational data based on the low estimate of Ec shows that the possibility of the stepwise pathway being a secondary channel at elevated temperatures cannot be ruled out.  相似文献   

12.
13.
The potential energy surface of the free 5'-deoxyadenosyl radical in the gas phase is explored using density functional and second-order M?ller-Plesset perturbation theories with 6-31G(d) and 6-31++G(d,p) basis sets and interpreted in terms of attractive and repulsive interactions. The 5',8-cyclization is found to be exothermic by approximately 20 kcal/mol but kinetically unfavorable; the lowest cyclization transition state (TS) lies about 7 kcal/mol higher than the highest TS for conversion between most of the open isomers. In open isomers, the two energetically most important attractive interactions are the hydrogen bonds (a) between the 2'-OH group and the N3 adenine center and (b) between the 2'-OH and 3'-OH groups. The relative ribose-adenine rotation about the C1'-N9 glycosyl bond in a certain range changes the energy by as much as 10-15 kcal/mol, the origin being (i) the repulsive 2'-H.H-C8 and O1'.N3 and (ii) the attractive 2'-OH.N3 ribose-adenine interactions. The hypothetical synergy between the glycosyl rotation and the Co-C bond scission may contribute to the experimentally established labilization of the Co-C bond in enzyme-bound adenosylcobalamin. The computational results are not inconsistent with the rotation about the C1'-N9 glycosyl bond being the principal coordinate for long-range radical migration in coenzyme B(12)-dependent enzymes. The effect of the protein environment on the model system results reported here remains an open question.  相似文献   

14.
The reaction of the bifunctional organic molecule 1-(dimethylamino)-2-propyne (DMAP) on the Si(100) surface has been investigated by density functional calculations employing a two-dimer cluster model. We found that, once in the physisorbed dative bonded well (-20.0 kcal mol(-1)), DMAP can proceed via a number of pathways, involving the formation of Si-C sigma bonds, which lead to thermodynamically more stable configurations. We first considered the cycloaddition of the CC triple bond, leading to a Si-C di-sigma bonded product (-58.7 kcal mol(-1)), for which we computed an energy barrier of only 12.5 kcal mol(-1), consistently with the observed switching of DMAP adsorption linkage at 300 K. We also explored the dissociative pathway involving the methylene C-H bond cleavage on the dative bonded DMAP, leading to three adsorption products with one (-57.3 kcal mol(-1)) and three Si-C sigma bonds (-58.7 and -60.6 kcal mol(-1)). The energy barrier for this pathway is computed 24.7 kcal mol(-1) and may therefore compete at temperature above 300 K with the reaction pathway involving the addition of the alkyne unit.  相似文献   

15.
The reaction of a chlorophosphorane (9-Cl) with primary amines produced anti-apicophilic spirophosphoranes (5, O-equatorial phosphoranes), which violate the apicophilicity concept, having an apical carbon-equatorial oxygen configuration, along with the ordinarily expected O-apical stereoisomers (6) with the apical oxygen-equatorial carbon configuration. Although the amino group is electronegative in nature, the O-equatorial phosphoranes were found to be stable at room temperature and could still be converted to their more stable O-apical pseudorotamers (6) when they were heated in solution. X-ray analysis implied that this remarkable stability of the O-equatorial isomers could be attributed to the orbital interaction between the lone-pair electrons of the nitrogen atom (n(N)) and the antibonding sigma(P-O) orbital in the equatorial plane. A kinetic study of the isomerization of 5 to 6 and that between diastereomeric O-apical phosphoranes 13b-exo and 13b-endo revealed that 5b bearing an n-propylamino substituent at the central phosphorus atom was found to be less stable than the corresponding isomeric 6b by ca. 7.5 kcal mol(-1). This value was smaller than the difference in energy (11.9 kcal mol(-1)) between the O-equatorial (1b) and the O-apical n-butylphosphorane (2b) by 4.4 kcal mol(-1). This value of 4.4 kcal mol(-1) can be regarded as the stabilization energy induced by the n(N) --> sigma(P-O) interaction. The experimentally determined value was in excellent agreement with that derived from density functional theory (DFT) calculations at the B3PW91 level (4.0 kcal mol(-1)) between the nonsubstituted aminophosphoranes (5g is less stable than 6g by 10.1 kcal mol(-1)) and their P-methyl-substituted counterparts (1a is less stable than 2a by 14.1 kcal mol(-1)).  相似文献   

16.
The atmospheric reaction NO2 + O3 --> NO3 + O2 (1) has been investigated theoretically by using the MP2, G2, G2Q, QCISD, QCISD(T), CCSD(T), CASSCF, and CASPT2 methods with various basis sets. The results show that the reaction pathway can be divided in two different parts at the MP2 level of theory. At this level, the mechanism proceeds along two transition states (TS1 and TS2) separated by an intermediate, designated as A. However, when the single-reference higher correlated QCISD methodology has been employed, the minimum A and the transition state TS2 are not found on the hypersurface of potential energy, which confirms a direct reaction mechanism. Single-reference high correlated and multiconfigurational methods consistently predict the barrier height of reaction (1) to be within the range 2.5-6.1 kcal mol(-1), in reasonable agreement with experimental data. The calculated reaction enthalpy is -24.6 kcal mol(-1) and the reaction rate calculated at the highest CASPT2 level, of k = 6.9 x 10(-18) cm(3) molecule(-1) s(-1). Both results can be regarded also as accurate predictions of the methodology employed in this article.  相似文献   

17.
High level ab initio calculations using complete active space self-consistent field and multi reference single and double excitation configuration interaction methods with cc-pVDZ (correlation consistent polarized valence double zeta) and cc-pVTZ (triple zeta) basis sets have been performed to elucidate the reaction mechanism of the ion-molecule reaction, C2H2(1Sigmag+) + O+(4S), for which collision experiment has been performed by Chiu et al. [J. Chem. Phys. 109, 5300 (1998)]. The minor low-energy process leading to the weak spin-forbidden product C2H2+ (2Piu) + O(1D) has been studied previously and will not be discussed here. The major pathways to form charge-transfer (CT) products, C2H2+ (2Piu) + O(3P) (CT1) and C2H2+ (4A2) + O(3P) (CT2), and the covalently bound intermediates are investigated. The approach of the oxygen atom cation to acetylene goes over an energy barrier TS1 of 29 kcal/mol (relative to the reactant) and adiabatically leads the CT2 product or a weakly bound intermediate Int1 between CT2 products. This transition state TS1 is caused by the avoided crossing between the reactant and CT2 electronic states. As the C-O distance becomes shorter beyond the above intermediate, the C1 reaction pathway is energetically more favorable than the Cs pathway and goes over the second transition state TS2 of a relative energy of 39 kcal/mol. Although this TS connects diabatically to the covalent intermediate Int2, there are many states that interact adiabatically with this diabatic state and these lead to the other charge-transfer product CT1 via either of several nonadiabatic transitions. These findings are consistent with the experiment, in which charge transfer and chemical reaction products are detected above 35 and 39 kcal/mol collision energies, respectively.  相似文献   

18.
The reaction mechanism associated with the Bergman cyclization of the (Z)-hexa-1,5-diyne-3-ene to render p-benzyne has been analyzed by means of a combined use of the electron localization function (ELF) and the catastrophe theory on the basis of density functional theory (DFT) calculations (B3LYP/6-31G(d)). The complex electronic rearrangements of this reaction can be highlighted using this novel quantum mechanical perspective. Five domains of structural stability of the ELF occurring along the intrinsic reaction path as well as four catastrophes (fold-cusp-fold-cusp) responsible for the changes in the topology of the system have been identified. The multiple factors that occur along the intrinsic reaction coordinate path are presented and discussed in a consistent way. The topological analysis of ELF and catastrophe theory reveals that mechanical deformation of the C1-C2-C3 unit and closed-shell repulsion between terminal acetylene groups lead to an early formation of diradicaloid character at C2 and C5 atoms. Immediately after the transition structure (TS) is reached, the open-shell-singlet biradical becomes stable. Meanwhile, C1 and C6 atoms are preparing to be covalently bonded; that will finally occur at a distance of 1.791 A. In addition, a separation of the ELF into in-plane (sigma) and out-of-plane (pi) contributions allows us to discuss the aromaticity profiles; sigma-aromaticity appears in the vicinities of the TS, while pi-aromaticity takes place in the final stage of the reaction path, once the ring has been formed.  相似文献   

19.
The performance of the valence bond self-consistent field (VBSCF) method was investigated in this paper by predicting the activation barriers and reaction energies in pericyclic and π bond shift reactions for hydrocarbons. The benchmarking set includes 3 electrocyclic reactions, 3 sigmatropic shifts, 3 cycloadditions, 2 cycloreversions, and 7 π bond shift reactions, where the first 11 reactions are taken from Houk's standard set (J. Phys. Chem. A 2003, 107, 11445). Computational results reveal that the VB(CI) method, which performs VBSCF calculations first with full covalent structures and then includes all mono- and di-ionic structures to compute the total energy without further orbital optimization, matches the accuracy of the complete active space SCF (CASSCF) method very well. The mean absolute error values (the deviations from the CASSCF data) are 0.01 kcal/mol for the reaction energy, and 0.26 and 0.32 kcal/mol for the activation energy with the 6-31G and 6-31G(d) basis sets, respectively. © 2018 Wiley Periodicals, Inc.  相似文献   

20.
The relative aromaticities of the three singlet benzyne isomers, 1,2-, 1,3-, and 1,4-didehydrobenzenes have been evaluated with a series of aromaticity indicators, including magnetic susceptibility anisotropies and exaltations, nucleus-independent chemical shifts (NICS), and aromatic stabilization energies (all evaluated at the DFT level), as well as valence-bond Pauling resonance energies. Most of the criteria point to the o-benzyne相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号