首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We obtained an exact solution for a uniformly accelerated Unruh–DeWitt detector interacting with a massless scalar field in (3 + 1) dimensions which enables us to study the entire evolution of the total system, from the initial transient to late-time steady state. We find that the conventional transition probability of the detector from its initial ground state to excited states, as derived from time-dependent perturbation theory over an infinitely long duration of interaction, is valid only in the transient stage and is invalid for cases with proper acceleration smaller than the damping constant. We also found that, unlike in (1 + 1)D results, the (3 + 1)D uniformly accelerated Unruh– DeWitt detector in a steady state does emit a positive radiated power of quantum nature at late-times, but it is not connected to the thermal radiance experienced by the detector in the Unruh effect proper.  相似文献   

2.
Quantum coherence of the tripartite W state and Greenberger–Horne–Zeilinger (GHZ) state under the Unruh effect are explored based on the model of a two‐level detector qubit coupled to a massless scalar field. The results reveal that Unruh thermal noise really destroys tripartite quantum resources. It is worth mentioning that the quantum coherence of the GHZ state reaches zero in the infinite acceleration limit, but that of the W‐state always remains nonzero. Coherence of the GHZ state displays a sudden death as the coupling parameter grows, while coherence freezing can be witnessed for the W state. It can be concluded that the W state is more robust than the GHZ state against Unruh radiation. Moreover, the related investigation can be expanded to N‐qubit quantum systems and the corresponding analytical solution is obtained. It indicates that the larger number W‐type entangled qubit can be as a better quantum resource for quantum information tasks under the Unruh effect.  相似文献   

3.
We investigate the effect of radiation reaction on the motion of a wave packet of a charged scalar particle linearly accelerated in quantum electrodynamics (QED). We give the details of the calculations for the case where the particle is accelerated by a static potential that were outlined in Higuchi and Martin Phys. Rev. D 70 (2004) 081701(R) and present similar results in the case of a time-dependent but space-independent potential. In particular, we calculate the expectation value of the position of the charged particle after the acceleration, to first-order in the fine structure constant in the ℏ→ 0 limit, and find that the change in the expectation value of the position (the position shift) due to radiation reaction agrees exactly with the result obtained using the Lorentz-Dirac force in classical electrodynamics for both potentials.  相似文献   

4.
We study spontaneous excitation of both a static detector (modelled by a two-level atom) immersed in a thermal bath and a uniformly accelerated one in the Minkowski vacuum interacting with a real massive scalar field.Our results show that the mass of the scalar field manifests itself in the spontaneous excitation rate of the static detector in a thermal bath (and in vacuum) in the form of a selection rule for transitions among states of the detector.However,this selection rule disappears for the accelerated ones,demonstrating that an accelerated detector does not necessarily behave the same as an inertial one in a thermal bath.We find the imprint left by the mass is the appearance of a grey-body factor in the spontaneous excitation and de-excitation rates,which maintains the detailed balance condition between them and thus ensures a thermal equilibrium at the Unruh temperature the same as that of the massless case.We also analyze quantitatively the effect of the mass on the rate of change of the detector's energy and find that when the mass is very small,it only induces a small negative correction.However,when it is very large,it then exponentially damps the rate,thus essentially forbidding any transitions among states of the detector.  相似文献   

5.
An alternative approach to analyze the nonrelativistic quantum dynamics of a rigid and extended charged particle taking into account the radiation reaction is discussed with detail. Interpretation of the field operators as annihilation and creation ones, theory of perturbations and renormalization are not used. The analysis is carried out in the Heisenberg picture with the electromagnetic field expanded in a complete orthogonal basis set of functions which allows the electromagnetic field to satisfy arbitrary boundary conditions. The corresponding coefficients are the field operators which satisfy the usual commutation relations. A nonlinear equation of motion for the charged particle is obtained. A careful consideration of the quantum effects allows the derivation of a linear equation of motion which is free of both runaway solutions and preacceleration, even for a point charge. Also, the electromagnetic mass, which is defined as the coefficient of the acceleration operator, vanishes for a point particle. However, this does not mean that the results are free of ambiguities which are exhibited and discussed.  相似文献   

6.
A protocol for multipartite quantum clock synchronization is performed under the influence of Unruh thermal noise. The dynamics of multipartite quantum system consisting of Unruh–DeWitt detectors when one of the detectors is accelerated are obtained. To estimate the time difference between the clocks, the time probability is calculated and how the probability is influenced by the Unruh thermal noise and other factors is analyzed. It is shown that both relativistic motion and interaction between the atom and the external scalar field affect the choice of optimal number of excited atoms in the initial state, which leads to a higher clock adjustment accuracy. Time probabilities for different types of initial states approach the same value in the limit of infinite acceleration, while tend to different minimums with increasing number of atoms. In addition, the accuracy of clock synchronization using a pair of entangled clocks in two‐party system is always higher than in a multipartite system, while the optimal Z‐type multipartite initial state always performs better than the W‐type state.  相似文献   

7.
We address the old question of whether or not a uniformly accelerated charged particle radiates, and consequently, if weak equivalence principle is violated by electrodynamics. We show that radiation has different meanings; some absolute, some relative. Detecting photons or electromagnetic waves is not absolute, it depends both on the electromagnetic field and on the state of motion of the antenna. An antenna used by a Rindler observer does not detect any radiation from a uniformly accelerated co-moving charged particle. Therefore, a Rindler observer cannot decide whether or not he is in an accelerated lab or in a gravitational field. We also discuss the general case.  相似文献   

8.
We argue that purely local experiments can distinguish a stationary charged particle in a static gravitational field from an accelerated particle in (gravity-free) Minkowski space. Some common arguments to the contrary are analyzed and found to rest on a misidentification of energy.  相似文献   

9.
The emission of radiation by a uniformly accelerated charge is analyzed. According to the standard approach, a radiation is observed whenever there is a relative acceleration between the charge and the observer. Analyzing difficulties that arose in the standard approach, we propose that a radiation is created whenever a relative acceleration between the charge and its own electric field exists. The electric field induced by a charge accelerated by an external (nongravitational) force is not accelerated with the charge. Hence the electric field is curved in the instantaneous rest frame of the accelerated charge. This curvature gives rise to a stress force, and the work done to overcome the stress force is the source of the energy carried by the radiation. In this way, the energy balance paradox finds its solution.  相似文献   

10.
In the framework of classical electromagnetism, a charge however accelerated with respect to an inertial frame radiates energy, in any circumstance. Regarding the energy as made of photons, the hypothesis is here introduced that the emission of a photon is only possible as a result of a change of the energy of the charge, which requires an energy-work exchange with the accelerating field. On such an hypothesis an elementary impulsive-dissipative model for the photon emission is constructed, in the framework of special relativity, in which no energy radiation is emitted from a charge in a central Coulomb field uniformly describing a circular orbit.  相似文献   

11.
The problem of the electromagnetic radiation produced by charge distributions in the framework of a semiclassical approach proposed in the work by Bagrov, Gitman, Shishmarev, and Farias Jr. [J. Synchrotron Rad. 27 , 902–911 (2020)] is addressed here. In this approach, currents, generating the radiation are considered classically, while the quantum nature of the radiation is kept exactly. Quantum states of the electromagnetic field are solutions of Schrödinger's equation, and relevant quantities to the problem are evaluated with the aid of transition probabilities. This construction allows us to introduce the quantum transition time in physical quantities and assess its role in radiation problems by classical currents. Radiated electromagnetic energies are studied in detail and a definition for the rate at which radiation is emitted from sources is presented. In calculating the total energy and rate radiated by a pointlike charged particle accelerated by a constant and uniform electric field, it is discovered that these results are compatible with results obtained by other authors in the framework of the classical radiation theory under an appropriate limit. Numerical and asymptotic analyses of the results are also performed.  相似文献   

12.
The present expression of radiation of an accelerated point charge is only approximately valid. The exact expression of radiation of an accelerated point charge is derived based on special relativity, and using the Larmor formulation for the radiation of an charged particle being accelerated, but instantaneously at rest. The totaled radiation power obtained by the exact expression is the same as Liénard’s generalization of the Larmor formula.  相似文献   

13.
14.
Motivated by recent works on the origin of inertial mass, we revisit the relationship between the mass of charged particles and zero-point electromagnetic fields. To this end we first introduce a simple model comprising a scalar field coupled to stochastic or thermal electromagnetic fields. Then we check if it is possible to start from a zero bare mass in the renormalization process and express the finite physical mass in terms of a cut-off. In scalar QED this is indeed possible, except for the problem that all conceivable cut-offs correspond to very large masses. For spin-1/2 particles (QED with fermions) the relation between bare mass and renormalized mass is compatible with the observed electron mass and with a finite cut-off, but only if the bare mass is not zero; for any value of the cut-off the radiative correction is very small.  相似文献   

15.
The dynamics of an electron accelerated by laser radiation with the help of a scheme based on the interference of three relativistically intense electromagnetic pulses with titled amplitude fronts is analyzed. It is shown that, starting at the center of the interference pattern, the electron moves along a spiral trajectory with the axis perpendicular to the wave vectors of the laser beams, gaining considerable kinetic energy in the process. The impact of radiation reaction under the arrangement is simulated numerically in the framework of various approaches intended to take into account the energy loss resulting from the effect. The energy loss by the electron is shown to depend strongly on its initial energy and on whether the electron and the laser pulse initially travel in the same or opposite directions. The relation between small energy losses due to radiation reaction and the electron capture by the optical field is established. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The basic methods that have been used for describing bound-state quantum electrodynamics are described and critically discussed. These include the external field approximation, the quasi-potential approaches, the effective potential approach, the Bethe–Salpeter method, and the three-dimensional equations of Lepage and other workers. Other methods less frequently used but of some intrinsic interest such as applications of the Duffin–Kemmer equation are also described. A comparison of the strengths and shortcomings of these various approaches is included.  相似文献   

17.
In this paper, we study a quantum anti-Zeno effect (QAZE) purely induced by repetitive measurements for an artificial atom interacting with a structured bath. This bath can be artificially realized with coupled resonators in one dimension and possesses photonic band structure like Bloeh electron in a periodic potential. In the presence of repetitive measurements, the pure QAZE is discovered as the observable decay is not negligible even for the atomic energy level spacing outside of the energy band of the artificial bath. If there were no measurements, the decay would not happen outside of the band. In this sense, the enhanced decay is completely induced by measurements through the relaxation channels provided by the bath. Besides, we also discuss the controversial golden rule decay rates originated from the van Hove's singularities and the effects of the counter-rotating terms.  相似文献   

18.
We examine whether a charge supported statically in a gravitational field radiates, and find the answer to this question to be positive. Based on our earlier results we find that the important condition for the creation of radiation is the existence of a relative acceleration between the charge and its electric field, where such an acceleration causes the curving of the electric field and the creation of a stress force due to this curvature. This stress force is the reaction force, which creates the radiation. Later we find that this condition do exist for a charge supported statically in a gravitational field, where the electric field of the charge falls in the gravitational field, it curves, and the stress force raised in this curved field, creates electromagnetic radiation.  相似文献   

19.
In this paper, we study a quantum anti-Zeno effect (QAZE) purely induced by repetitive measurements for an artificial atom interacting with a structured bath. This bath can be artificially realized with coupled resonators in one dimension and possesses photonic band structure like Bloch electron in a periodic potential. In the presence of repetitive measurements, the pure QAZE is discovered as the observable decay is not negligible even for theatomic energy level spacing outside of the energy band of the artificial bath. If there were no measurements, the decay would not happen outside of the band. In this sense, the enhanced decay is completely induced by measurements through the relaxation channels provided by the bath. Besides, we also discuss the controversial golden rule decay rates originated from the van Hove's singularities and the effects of the counter-rotating terms.  相似文献   

20.
We present a short and direct derivation of Hawking radiation by using the Damour-Ruffini method, as taking into account the self-gravitational interaction from the Kerr-Newman black hole, It is found that the radiation is not exactly thermal, and because the derivation obey conservation laws, the non-thermal Hawking radiation can carry information from the black hole. So it can be used to explain the black hole information paradox, and the process satisfies unitary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号