首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser perforating is a new method in oil and gas wells where researchers look for an alternative to explosive methods. One of the important problems with this method is the generation of uniform and cylindrical holes at a selected pitch for enhancing the permeability of rocks. In non-moving laser perforation, the nozzle of the laser and the rock do not approach each other and due to laser convergence in a point, uniform and cylindrical holes are not created. For this reason, moving laser perforation is suggested in this research. One of the important parameters in moving laser perforation is the power of the laser that can be perforated at a specific rate. In this article we predicted the laser power for a definite rate of perforation (ROP) and then the accuracy of this prediction was evaluated to support the experiments. A pulsed Nd: YAG laser, with a pulse energy around 5.5 J, pulse repetition rate of 30 Hz and pulse duration of 2 ms were used for rock perforation in this study. The results shows that the presented relation for perforation could reliably be used in practice. Furthermore, by knowing the rate of perforation, the required laser power for consistent drilling could be calculated.  相似文献   

2.
The influence of the direct pumping into the 4F3/2 emitting level on the output characteristics of continuous-wave (CW) pumped, passively or actively (acoustooptic, AO) Q-switched Nd lasers is discussed. In case of passive Q-switching by Cr4+:YAG saturable absorber (SA) crystal, the change of pumping wavelength from 0.81 μm into the highly-absorbing 4F5/2 level to 0.88 μm into the 4F3/2 level of Nd does not modify the energy of the Q-switch pulse, but increases the pulse repetition rate and the laser average power for the same absorbed pump power. This is demonstrated with 0.81 and 0.88 μm CW laser diode-pumped Nd:YAG and Nd-vanadate lasers with average output power in the watt-level range at 1.06 μm. The effect is explained by the control of passive Q-switching by the intracavity photon flux that is influenced by the pump wavelength and by the initial transmission of the SA crystal. On the other hand, it is discussed and experimentally proved that due to the possibility to control externally the frequency of switching, in case of the AO Q-switched Nd laser the change of the pump wavelength from 0.81 to 0.88 μm increases the pulse energy for a fixed frequency, leading to a corresponding increase of the average laser power.  相似文献   

3.
介绍了光纤激光器的理论模型和结构组成,搭建了976nm激光二极管(LD)泵浦的准连续输出双包层掺镱光纤激光器系统。制作了激光脉冲电源方波发生电路,该电源在脉冲工作模式下重频≤1000Hz,脉宽从10μs-50ms可调,占空比≤50%。分析了稀土掺杂双包层光纤的各项性能和能级系统,并实验研究了准连续掺镱双包层光纤激光器的输出特性。在最大泵浦功率为8.12w,重频为50Hz和脉宽为10ms下,测得其最大脉冲输出功率为2.67w。  相似文献   

4.
A compact diode-end-pumped passively Q-switched intra-cavity frequency doubled Nd:YAG/Cr4+:YAG composite crystal laser was demonstrated. The pulsed laser at 532 nm was produced and the dependence of the average out power, pulse width and pulse repetition rate on incident pump power were measured. Under the pump power of 14 W, the minimum pulse width of 3.5 ns with repetition rate of 27.5 kHz was obtained, corresponding single-pulse energy of 18 μJ and peak power of 5.3 kW.  相似文献   

5.
Laser cutting characteristics including power level and cutting gas pressure are investigated in order to obtain an optimum kerf width. The kerf width is investigated for a laser power range of 50–170 W and a gas pressure of 1–6 bar for steel and mild steel materials. Variation of sample thickness, material type, gas pressure and laser power on the average cut width and slot quality are investigated. Optimum conditions for the steel and mild steel materials with a thickness range of 1–2 mm are obtained. The optimum condition for the steel cutting results in a minimum average kerf width of 0.2 mm at a laser power of 67 W, cutting rate of 7.1 mm/s and an oxygen pressure of 4 bar. A similar investigation for the mild steel cutting results in a minimum average kerf width of 0.3 mm at the same laser power of 67 W, cutting rate of 9.5 mm/s, and an oxygen pressure of 1 bar. The experimental average kerf is about 0.3 mm, which is approximately equal to the estimated focused beam diameter of 0.27 mm for our focusing lens (f=4 cm and 100 W power). This beam size leads to a laser intensity of about 1.74×109 W/m2 at the workpiece surface. The estimated cutting rate from theoretical calculation is about 8.07 mm/s (1.0 mm thickness and 100 W power), which agrees with the experimental results that is 7.1 mm/s for 1.0 mm thickness of mild steel at the laser power of 88 W.  相似文献   

6.
A passively Q-switched a-cut Nd:YVO4 self-stimulating Raman laser using a Cr:YAG saturable absorber has been demonstrated for the first time. The maximum average output power of the self-Raman laser at 1176 nm is 347 mW at the incident pump power of 10 W with a pulse repetition frequency (PRF) of 66 kHz. The pulse width, pulse energy of the 1176 nm are found to be 10 ns and 5.6 μJ. The conversion efficiency from diode laser input power to Raman output power is 3.47%.  相似文献   

7.
An efficient laser diode end-pumped continuous-wave (CW) and AO Q-switched laser of Nd:LiLuF4 crystal with dual central wavelengths of 1053.1 and 1054.7 nm is reported for the first time. The maximum CW output power of 6.22 W was obtained at absorbed pump power of ∼14.6 W with the output transmission of 2%. The optical conversion efficiency is ∼43%, corresponding to a slope efficiency of about 48% with respect to the absorbed pump. For the Q-switched operation, the shortest pulse width of 17 ns was obtained at the pulse repetition frequency (PRF) of 0.5 kHz, resulting in a pulse energy of 2.24 mJ and peak power of 131.8 kW.  相似文献   

8.
An efficient continuous wave (CW) and Q-switched c-cut Tm:YAP laser is reported in this letter. With the dual-end-pumped convex-concave resonator, CW output power up to 13.6 W at 1.99 μm was obtained under a total incident pump power of 50 W. The corresponding slope efficiency was 34.3% and conversion efficiency was 27.2%. The active Q-switched operation of the laser had an average output power of 12.5 W at 10 kHz pulse repetition frequency, with a minimum pulse width of 126 ns. With 6 kHz pulse repetition frequency, the maximum pulse energy of 1.6 mJ was obtained. In addition, using the Tm:YAP laser as a pumping source for gain-switched Cr:ZnSe laser, as much as 4 W output power in the wavelength range of 2.5–2.6 μm was obtained.  相似文献   

9.
A passively Q-switched all solid-state Nd:LuVO4 1.06 μm laser was demonstrated by using Cr4+:YAG as saturable absorber. The characteristics of average output power, pulse width, repetition rate, pulse energy, and peak power were studied with different output couplings and initial transmission of saturable absorbers. When output coupling with the transmission of 20% was used, the shortest pulse width of 16 ns at the repetition rate of 12.5 kHz was obtained, which results in the pulse energy of 71 μJ and peak power of 4.43 kW with the initial transmission of 70% of Cr4+:YAG crystal.  相似文献   

10.
An efficient eye-safe GTR-KTP IOPO with the shared cavity configuration and excited by a diode-end-pumped composite Nd:YAG/Cr4+:YAG laser was demonstrated. Under the incident LD power of 8.4 W, the maximum average output power of 900 mW at 1572 nm was obtained with the T=33% output coupler, corresponding to a diode-to-signal conversion efficiency of 10.7%. The corresponding signal pulse width and repetition rate were respectively 2.2 ns and 12 kHz, with the peak power and single pulse energy estimated to be 34.1 kW and 75 μJ, respectively. The instability of the average signal output power over hours-long operation was found to be 2.0%. As for the common KTP IOPO at the same pump condition and cavity design, a lower average output power of 640 mW with a longer pulse width of 4.6 ns was obtained. The corresponding diode-to-signal conversion efficiency was reduced by 28.8% compared with that obtained in GTR-KTP IOPO. A theoretical model for the compact GTR-KTP IOPO was also presented in this paper. Theoretical analysis on the pulse characteristics of the signal was performed, which showed a good agreement with that obtained experimentally.  相似文献   

11.
We have investigated acoustic-optical Q-switched Tm,Ho:YLF laser end-pumped by a laser-diode. At room temperature, a 2.067 μm wavelength pulsed output is realized. Average output power, single pulse energy and pulse-width are measured at different incident pump powers and pulse repetition frequencies. When the incident pump power is 2.8 W, a maximum average output power of 189 mW is obtained at the repetition frequency of 9 kHz, and this corresponds to an optical conversion efficiency of 6.8%. The maximum single pulse energy of 65μJ, the shortest pulse-width with full-width at half-maximum (FWHM) of 138 ns and the maximum peak power of 470 W are obtained at the pulse repetition frequency of 1 kHz.  相似文献   

12.
Highly efficient continuous-wave and acousto-optically Q-switched laser emission in Nd:GdVO4 crystal, end-pumped at 879 nm into the laser emitting level, are reported. A maximum cw output power of 13.3 W is obtained, corresponding to the slope efficiency of 74.6% in absorbed power; an average output power of 12.1 W, a pulse width of 20.3 ns and a peak power of about 6 kW are reached at 100 kHz in A-O Q-switched operation. PACS  42.55.-f; 42.55.Xi; 42.60.Gd  相似文献   

13.
In this paper, a mechanical Q-switching is used in radio frequency (RF) excited waveguide CO2 laser to obtain high pulse repetition frequency (PRF) laser. The Q-switching system includes two confocal ZnSe lenses and a high speed mechanical chopper, which is inserted into the cavity. The peak power is up to 730 W and the pulse width 200 ns at the highest PRF 20 kHz. The laser also has the advantages of compact, small-volume, and low-cost.  相似文献   

14.
A diode-laser array end-pumped acousto-optically Q-switched NYAB laser operating at both 1.06 and 0.53 μm has been demonstrated. An average output power of 1.3 W at 1.06 μm at a pulse repetition frequency (PRF) of 60 kHz was obtained with an optical conversion efficiency of 18.1% and a slope efficiency of 21.3%. At the incident pump power of 6.1 W, the 1.06 μm shortest laser pulse was reached at PRF of 20 kHz with FWHM width measured to be 32 ns, yielding a largest pulse energy of 30 μJ, and a highest peak power of 938 W. The attainable maximum average green power was found to be 185 mW, with an optical conversion efficiency of 3%.  相似文献   

15.
A passively Q-switched Er-doped fiber laser using a semiconductor saturable absorber mirror (SESAM) is demonstrated. Q-switching is observed with the output power produced at a slope efficiency of 29.4% with respect to the absorbed pump power. The maximum average output power of 8.37 mW is achieved. The pulse repetition frequency obtained can be turned from 1.72 to 7.95 kHz. The pulse energy of 17.2 nJ has been obtained at the pump power of 46.75 mW, and the pulse width is 30 μs.  相似文献   

16.
An LD-pumped Nd:YVO4 passively Q-switched by V:YAG and intracavity frequency doubled by LBO red pulse laser at 671 nm was presented. With 1.6 W incident pump power, average output power of 53 mW, pulse duration (FWHM) of 29.5 ns, pulse repetition rate of 37.2 kHz, peak power of 48.3 W and single-pulse energy of 1.43 μJ were obtained. The stability of pulse energy and repetition rate was better than 3% for 4 h.  相似文献   

17.
针对短脉冲高功率热流作用下的薄壁金属导热问题,基于傅里叶导热模型,采用固液耦合计算方法对金属瞬态温度特性进行了数值仿真,并分析了液体工质流速及固体材料物性参数对金属温度瞬态响应和分布的影响作用。分析结果表明:温度响应特性与时间尺度有关,在单次脉冲作用下,在ms量级内热量才能开始通过水侧对流散热散出,25ms后金属内部温度渐趋平衡;在连续脉冲作用下,金属内部温度逐渐升高,一定时间后温度变化达到动态平衡,壁面温度在一定范围内波动;停止加热后,在2s内温度逐渐降低至初始状态。提高水的流速和固体壁面热扩散系数均可降低壁面温度,且缩短温度趋衡所需时间。  相似文献   

18.
针对短脉冲高功率热流作用下的薄壁金属导热问题,基于傅里叶导热模型,采用固液耦合计算方法对金属瞬态温度特性进行了数值仿真,并分析了液体工质流速及固体材料物性参数对金属温度瞬态响应和分布的影响作用。分析结果表明:温度响应特性与时间尺度有关,在单次脉冲作用下,在ms量级内热量才能开始通过水侧对流散热散出,25 ms后金属内部温度渐趋平衡;在连续脉冲作用下,金属内部温度逐渐升高,一定时间后温度变化达到动态平衡,壁面温度在一定范围内波动;停止加热后,在2 s内温度逐渐降低至初始状态。提高水的流速和固体壁面热扩散系数均可降低壁面温度,且缩短温度趋衡所需时间。  相似文献   

19.
By simultaneously using an electro-optic (EO) modulator and a single-walled carbon nanotube saturable absorber (SWCNT-SA) in the cavity, a diode-pumped doubly Q-switched Nd:Lu0.33Y0.37Gd0.3VO4 (Nd:LuYGdVO4) laser is demonstrated. At the incident pump power 11.43 W and f=2 kHz, the minimum pulse width 17.6 ns and the maximum pulse peak power 19,886 W can be obtained. The experimental results show that this doubly Q-switched Nd:LuYGdVO4 laser can generate shorter pulse width and higher peak power compared to the singly Q-switched Nd:LuYGdVO4 laser with only EO or SWCNT-SA.  相似文献   

20.
血管支架光纤激光切割技术   总被引:3,自引:0,他引:3  
采用光纤激光器对血管支架进行了激光切割工艺研究,通过实验获得了聚焦透镜焦距及焦点位置、输出功率、切割速度、脉冲频率、脉冲宽度、辅助气体种类及压强等工艺参数对切缝宽度和缝面质量的影响规律.结果表明:缝宽随输出功率、频率、脉宽及辅助氧压的增大而增加,随着切割速度的增加而减小.在实验的基础上找出了血管支架切割的最佳工艺参数,在316LVM不锈钢细管上(管壁厚度为0.12 mm,直径为2 mm)获得了切缝均匀,缝宽小于20 μm网状结构的血管支架.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号