首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new type of palladium-catalyzed CO(2) recycling reaction using allylic carbonates is described. Reaction of trans-4-methoxycarbonyloxy-2-buten-1-ols in the presence of a palladium catalyst produces cyclic carbonates having a vinyl group via a CO(2) elimination-fixation process. A variety of allylic carbonates participate in the reaction giving cyclic carbonates with high efficiencies. Stereoselective construction of trans-cyclic carbonates is achieved by using nonsymmetric substrates. An enantiospecific reaction proceeds to give chiral cyclic carbonate when a chiral methyl-substituted substrate is subjected to the reaction conditions.  相似文献   

2.
[reaction: see text] A Pd-catalyzed asymmetric allylic amination using aspartic acid derived P-chirogenic diaminophosphine oxides (DIAPHOXs) is described. Asymmetric allylic amination of both linear and cyclic substrates proceeded at room temperature to give the chiral allylic amines in 72-99% ee.  相似文献   

3.
The palladium-catalyzed deracemization of racemic cyclic and acyclic allylic methyl carbonates in water in the presence of N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphophino)benzamide] proceeds with high enantioselectivities to give the corresponding allylic alcohols in high yields. This deracemization involves a palladium-catalyzed allylic substitution with the in-situ-formed hydrogen carbonate ion and an irreversible decomposition of the intermediate allylic hydrogen carbonates, with formation of the corresponding allylic alcohols. The palladium-catalyzed reaction of racemic cyclic allylic acetates with potassium hydrogen carbonate in water in the presence of the chiral bisphosphane proceeds with a highly selective kinetic resolution to give the corresponding allylic alcohols and allylic acetates.  相似文献   

4.
Although over 100 catalysts have been reported to catalyze the asymmetric addition of alkyl groups to aldehydes, these catalysts fail to promote additions to ketones with >90% enantioselectivity. This paper describes the asymmetric 1,2-addition of alkyl groups to conjugated cyclic enones to give allylic alcohols with chiral quaternary centers. The resultant allylic alcohols are converted into epoxy alcohols with excellent diastereoselectivities. Treatment of the epoxy alcohols with BF3.OEt2 induces a semipinacol rearrangement to provide alpha,alpha-dialkyl-beta-hydroxy ketones with all-carbon chiral quaternary centers. We also report a one-pot procedure for the asymmetric addition/diastereoselective epoxidation reaction. Simply exposing the reaction mixture to dioxygen after the asymmetric addition reaction is complete results in epoxidation of the allylic alcohol with high diastereoselectivity.  相似文献   

5.
Copper‐catalyzed enantioselective allyl–allyl coupling between allylboronates and either Z‐acyclic or cyclic allylic phosphates using a new chiral N‐heterocyclic carbene ligand, bearing a phenolic hydroxy, is reported. This reaction occurs with exceptional SN2′‐type regioselectivities and high enantioselectivities to deliver chiral 1,5‐diene derivatives with a tertiary stereogenic center at the allylic/homoallylic position.  相似文献   

6.
A novel regiodivergent kinetic resolution of a series of allylic epoxides with alkylzinc reagents is described. Results demonstrate the potential of chiral copper-phosphoramidite catalysts for enantiomer differentiation of allylic epoxides, allowing a chiral catalyst-stereoregulated synthesis of cyclic allylic and homoallylic alcohols with high optical purities.  相似文献   

7.
Upon successive treatment with lithium diisopropylamide and then benzaldehyde, a chiral alpha,beta,psi,omega-unsaturated bisphosphine oxide underwent Michael cyclization-aldol tandem reaction to afford the corresponding endo-alpha,beta-unsaturated cyclic bisphosphine oxides. Sequential stereoselective reduction and Horner-Wadsworth-Emmons olefination gave the corresponding monophosphine oxide. Oxidative conversion of an olefin moiety into a carboxyl group and subsequent deoxygenation of an oxide gave the corresponding chiral phosphinocarboxylic acid, which was successfully applied as a chiral and functionalized monophosphine ligand in a palladium-catalyzed asymmetric allylic alkylation.  相似文献   

8.
Development of novel chiral hemilabile Segphos P-P=O ligands is described. The ligands are examined for enantioselective Pd-catalyzed allylic alkylation of cyclic allylic acetates.  相似文献   

9.
刘振德  何煦昌 《化学进展》2006,18(11):1489-1497
本文综述了近10 年来手性二茂铁类配体在钯催化不对称烯丙基取代反应,包括各种不同底物的烯丙基烷基化、烯丙基胺基化和烯丙基磺酰化反应中的应用,并对其在不对称Claisen 重排、不对称Diels-Alder 反应、不对称Heck 反应、不对称羰基化、不对称氢化硅烷化和不对称碳碳键断裂等反应中的应用进行了综述,对部分反应的机理和该领域的发展前景进行了讨论。  相似文献   

10.
A highly efficient and enantioselective Ir-catalyzed hydrogenation of unsaturated sulfones was developed. Chiral cyclic and acyclic sulfones were produced in excellent enantioselectivities (up to 98% ee). Coupled with the Ramberg-B?cklund rearrangement, this reaction offers a novel route to chiral allylic and homoallylic compounds in excellent enantioselectivities (up to 97% ee) and high yields (up to 94%).  相似文献   

11.
Herein, we report a synthesis of cyclohexanones bearing multi-continuous stereocenters by combining copper-catalyzed asymmetric conjugate addition of dialkylzinc reagents to cyclic enones with iridium-catalyzed asymmetric allylic substitution reaction. Good to excellent yields, diastereoselectivity and enantioselectivity can be obtained. Unlike the stereodivergent construction of adjacent stereocenters (1,2-position) reported in the literature, the current reaction can achieve the stereodivergent construction of nonadjacent stereocenters (1,3-position) by a proper combination of two chiral catalysts with different enantiomers.  相似文献   

12.
The palladium-catalyzed allylic alkylation of KSAc and KSBz with racemic cyclic and acyclic allylic esters by using N,N'-(1R,2R)-1,2-cyclohexandiylbis[2-(diphenylphosphino)-benzamide] as ligand frequently gave the corresponding allylic thioesters with high ee values and yields. The reaction of the cyclic allylic carbonates with KSAc in the presence of H(2)O was accompanied by a partial palladium-catalyzed enantioselective "hydrolysis" of the substrates with formation of the corresponding enantioenriched allylic alcohols. The degree of the "hydrolysis" was strongly dependent on the solvent and the thiocarboxylate ion. Highly selective kinetic resolutions (KRs) were observed in the palladium-catalyzed reaction of the racemic cyclohexenyl and cycloheptenyl acetates with KSAc. While the KR of the cyclohexenyl acetate is characterized by a selectivity factor S = 72 +/- 19, that of the cycloheptenyl acetate afforded (R)-cycloheptenyl acetate of >or=99% ee in 48% yield and (S)-cycloheptenyl thioacetate of 98% ee in 50% yield. The palladium-catalyzed reaction of the racemic cyclopentenyl acetate with KSAc showed a strong "memory effect" (ME), that is, both enantiomers reacted with different enantioselectivities. The ME was probed by studying the palladium-catalyzed reactions of both the matched acetate of >or=99% ee and the mismatched acetate of >or=99% ee with KSAc. The acetates not only reacted with different enantioselectivities and rates but also suffered an unexpected and concomitant palladium-catalyzed racemization in the presence of the chiral ligand. This led in the case of the mismatched acetate to a temporary dynamic kinetic resolution (DKR) that featured a racemization of the mismatched acetate by the chiral catalyst. Studies of the palladium-catalyzed reaction of the racemic cyclopentenyl acetate, carbonate, and naphthoate with KSAc in the presence of the chiral ligand also showed the ME to be strongly dependent on the nucleofuge. This also allowed the synthesis of (S)-cyclopentenyl thioacetate of 92% ee in high yield from the racemic cyclopentenyl naphthoate.  相似文献   

13.
Allylic amines are useful building blocks in organic synthesis, so the development of green and efficient methods for the preparation of allylic amines are of great importance. An Fe-catalyzed amidation of allylic alcohols with chiral tert-butylsulfinamide has been developed. With water as the only by-product, a range of synthetically useful chiral sulfinamide olefin derivatives (30 examples) were obtained under mild reaction conditions. The reaction can be performed on a gram-scale, and the products could serve as chiral ligands for asymmetric catalysis. Mechanistic studies suggest that the reaction proceeds by an Fe-catalyzed borrowing hydrogen process, which is different from most of the reported allylic amination reactions.  相似文献   

14.
Although many chiral ligands for asymmetric catalysis have been developed, there is still a need for new structures allowing the modular approach. Recently, easy synthesis of chiral pyridine-containing β-amino alcohols has been elaborated by opening respective epoxides with enantiomeric 1-phenylethylamine. This paper reports the synthetic transformation of β-amino alcohols into the new complexing pyridine-containing seleno- and thioethers. The amino alcohols were effectively converted to cyclic sulfonamidates, which were reacted with thiolates or phenyl selenide nucleophile. The reaction was diastereoselective, and its outcome depended on the configuration at the substitution center. The problem was discussed considering DFT optimized structures of both diastereomeric sulfonamidates. New amino-aldimine ligands were also synthesized from chiral pyridine-containing diamines. Nine new chiral ligands were tested in the Tsuji-Trost allylic alkylation resulting in the enantiomerically enriched product in up to 75% ee. The observed stereochemical induction agrees with the prevailing nucleophilic attack at the allylic carbon laying opposite to the complexing nitrogen of pyridine in η3-allylic intermediate complexes.  相似文献   

15.
This review describes the development of a new class of chiral phosphorus ligands: amino acid-derived P-chirogenic diaminophosphine oxides, DIAPHOXs, and their application to several transition metal-catalyzed asymmetric allylic substitution reactions. Pd-catalyzed asymmetric allylic alkylation with cyclic beta-keto esters as prochiral nucleophiles was initially examined using P-chirogenic diaminophosphine oxide 1a, resulting in highly enantioselective construction of quaternary stereocenters. Mechanistic investigations revealed that 1a is activated by N,O-bis(trimethylsilyl)acetamide-induced tautomerization to afford a trivalent diamidophosphite species 13, which functions as the actual ligand. Pd-catalyzed asymmetric allylic substitutions of both acyclic and cyclic substrates were also examined using various nucleophiles such as malonate derivatives, nitromethane, aliphatic amines, and aromatic amines, providing a variety of chiral compounds with good to excellent enantioselectivity. In addition, Ir-catalyzed asymmetric allylic amination and alkylation of terminal allylic carbonates were examined using structurally optimized P-chirogenic diaminophosphine oxides, and the corresponding branched products were obtained in a highly regio- and enantioselective manner. Furthermore, the developed catalytic asymmetric process was successfully applied to the catalytic enantioselective synthesis of biologically active compounds, (R)-preclamol, (R)-baclofen hydrochloride, and (-)-paroxetine.  相似文献   

16.
A palladium-catalyzed asymmetric umpolung allylation reaction of imines with allylic alcohols has been developed. In the presence of chiral spiro phosphoramidite ligand 4, the allylation was accomplished with high yields and good enantioselectivities. The use of highly stable and easily available allylic alcohols instead of allylic metal reagents facilitated the preparation of chiral homoallylic amines.  相似文献   

17.
The base-mediated rearrangement of epoxides into allylic alcohols is a well-known synthetic transformation. The first enantioselective version of the reaction using a chiral base was reported in 1980. Since then, the reaction has received a lot of attention mostly due to the great usefulness of chiral allylic alcohols in organic synthesis. Major breakthroughs in the area were the first report on using a sub-stoichiometric amount of chiral base, and the development of chiral bases for a true catalytic reaction protocol. The present review covers the time from when the first asymmetric epoxide isomerisation reaction was reported (1980) up to now, focusing on the period 1997-2001.  相似文献   

18.
A regio‐ and enantioselective tandem reaction is reported capable of directly transforming readily accessible achiral allylic alcohols into chiral sulfonyl‐protected allylic amines. The reaction is catalyzed by the cooperative action of a chiral ferrocene palladacycle and a tertiary amine base and combines high step‐economy with operational simplicity (e.g. no need for inert‐gas atmosphere or catalyst activation). Mechanistic studies support a PdII‐catalyzed [3,3] rearrangement of allylic carbamates—generated in situ from the allylic alcohol and an isocyanate—as the key step, which is followed by a decarboxylation.  相似文献   

19.
A highly enantioselective kinetic resolution of tertiary 2‐alkoxycarboxamido allylic alcohols has been achieved through a chiral phosphoric acid catalyzed intramolecular transesterification reaction. Both alkyl,aryl‐ and dialkyl‐substituted tertiary allylic alcohols were resolved with excellent efficiencies, affording both the recovered tertiary alcohols and the carbamate products with high enantioselectivities (with s factors up to 164.6). A gram‐scale reaction with 1 mol % catalyst loading and the facile conversion of the enantioenriched products into useful chiral building blocks, such as chiral oxazolidinones and β‐amino alcohols, demonstrate the value of this reaction.  相似文献   

20.
《Tetrahedron: Asymmetry》2007,18(17):2055-2060
New chiral phospholanes were prepared by coupling of bromo-substituted heterocycles with the enantiopure, building block (2R,5R)-2,5-dimethyl-1-chlorophospholane. Some of the new phosphine ligands have the potential for self-assembling via hydrogen bondings in a metal complex. By application of these and related ligands in the palladium catalyzed allylic amination reaction, high enantioselectivities (up to 99%) were achieved. The influence of the construction of the cyclic phosphine ligands on the enantioselectivity is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号